DOI QR코드

DOI QR Code

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng (i-Cube Group, ERI, School of Nano and Advanced Material Engineering, Gyeongsang National University) ;
  • Hur, Bo-Young (i-Cube Group, ERI, School of Nano and Advanced Material Engineering, Gyeongsang National University)
  • Received : 2012.05.31
  • Accepted : 2012.06.13
  • Published : 2012.06.27

Abstract

Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Keywords

References

  1. B. Y. Hur and X. Zhu, Mater. Sci. Forum, 439, 200 (2003). https://doi.org/10.4028/www.scientific.net/MSF.439.200
  2. B. Y. Hur, B. -K. Park, S. -Y. Kim and H. Bae, Mater. Sci. Forum, 486-487, 472 (2005). https://doi.org/10.4028/www.scientific.net/MSF.486-487.472
  3. S. Y. Kim, B. Y. Hur, C. K. Kwon, D. K. Ahn and S. H. Park, J. Kor. Inst. Met. & Mater., 40(8), 910 (2002).
  4. M. V. Twigg and J. T. Richardson, Ind. Eng. Chem. Res., 46, 4166 (2007). https://doi.org/10.1021/ie061122o
  5. D. Fino, G. Saracco and V. Specchia, Chem. Eng. Sci., 57, 4955 (2002). https://doi.org/10.1016/S0009-2509(02)00295-6
  6. K. Raiber, P. Hammerschmid and D. Janke, ISIJ Int., 35, 380 (1995). https://doi.org/10.2355/isijinternational.35.380
  7. L. Tadrist, M. Miscevic, O. Rahli and F. Topin, Exp. Therm. Fluid. Sci., 28, 193 (2004). https://doi.org/10.1016/S0894-1777(03)00039-6
  8. S. Langlois and F. Coeuret, J. Appl. Electrochem., 20, 749 (1990). https://doi.org/10.1007/BF01094301
  9. P. J. Elverum, J. L. Ellzey and D. Kovar, J. Mater. Sci., 40, 155 (2005). https://doi.org/10.1007/s10853-005-5701-6
  10. P. D. Plessis, A. Montillet, J. Comiti and J. Legrand, Chem. Eng. Sci., 49, 3545 (1994). https://doi.org/10.1016/0009-2509(94)00170-7
  11. K. Boomsma, D. Poulikakos and Y. Ventikos, Int. J. Heat Fluid Flow, 24, 825 (2003). https://doi.org/10.1016/j.ijheatfluidflow.2003.08.002
  12. J. T. Richardson, Y. Peng and D. Remue, Appl. Catal. Gen., 204, 19 (2000). https://doi.org/10.1016/S0926-860X(00)00508-1
  13. L. Giani, G. Groppi and E. Tronconi, Ind. Eng. Chem. Res., 44, 4993 (2005). https://doi.org/10.1021/ie0490886
  14. S. J. Kim and D. Kim, J. Heat Tran., 123, 527 (2001). https://doi.org/10.1115/1.1370504
  15. R. Gil, A. Jinnapat and A. R. Kennedy, Compos. Appl. Sci. Manuf., 43, 880 (2012). https://doi.org/10.1016/j.compositesa.2012.02.001
  16. D. Carnelli, G. Pennati, T. Villa, L. Baglioni, B. Reimers and F. Migliavacca, Artif. Organs, 35, 74 (2011). https://doi.org/10.1111/j.1525-1594.2010.01018.x
  17. M. P. Fernandez, in Proceedings of the 6th International Conference on Porous Metals and Metallic Foams; MetFoam 2009 (Bratislava, Slovakia, September 2009), P32.
  18. N. Q. Zhao, B. Jiang, X. W. Du, J. J. Li, C. S. Shi and W. X. Zhao, Mater. Lett., 60, 1665 (2006). https://doi.org/10.1016/j.matlet.2005.11.088
  19. K. R. Ravi, R. M. Pillai, K. R. Amaranathan, B. C. Pai and M. Chakraborty, J. Alloy. Comp., 456, 201 (2008). https://doi.org/10.1016/j.jallcom.2007.02.038
  20. K. Benedy and C. Joseph, Light Met. Age, 63, 36 (2005).
  21. D. P. Yao, Master Thesis(in English), p. 4, Gyeongsang National University, Korea (2007).
  22. E. W. Andrews and L. J. Gibson, Scripta Mater., 44, 1005 (2001). https://doi.org/10.1016/S1359-6462(01)00673-X
  23. H. M. Sui, Master Thesis(in English), p. 9, Gyeongsang National University, Korea (2006).
  24. M. X. Xu, Master Thesis(in Chinese), p. 60-65, Taiyuan University of Technology, China (2009).
  25. D. -H. Yang, B. -Y. Hur and S. -R. Yang. J. Alloy. Comp., 461, 221 (2008). https://doi.org/10.1016/j.jallcom.2007.07.098

Cited by

  1. Compressive Behavior of Open-Cell Titanium Foams with Different Unit Cell Geometries vol.58, pp.11, 2017, https://doi.org/10.2320/matertrans.L-M2017834
  2. Current Status and Recent Developments in Porous Magnesium Fabrication pp.14381656, 2017, https://doi.org/10.1002/adem.201700562