DOI QR코드

DOI QR Code

Plasma Treatment of Carbon Nanotubes and Interfacial Evaluation of CNT-Phenolic Composites by Acoustic Emission and Dual Matrix Techniques

음향 방출과 이중 기지 기술을 이용한 탄소나노튜브의 플라즈마 처리 효과에 따른 탄소나노튜브-페놀 복합재료의 계면특성 평가

  • 왕작가 (경상대학교 나노.신소재공학부 대학원) ;
  • 권동준 (경상대학교 나노.신소재공학부 대학원) ;
  • 구가영 (경상대학교 나노.신소재공학부 대학원) ;
  • 이우일 (서울대학교 기계.항공공학부) ;
  • 박종규 (국방과학연구소, 제4연구부) ;
  • 박종만 (경상대학교 나노.신소재공학부)
  • Received : 2012.02.27
  • Accepted : 2012.04.20
  • Published : 2012.06.30

Abstract

Atmospheric pressure plasma treatment on carbon nanotube (CNT) surfaces was performed to modify reinforcement effect and interfacial adhesion of carbon fiber reinforced CNT-phenolic composites. The surface changes occurring on CNT treated with plasma were analyzed by using Fourier transform infrared spectroscope (FT-IR). The significant improvement of wettability on CNT was confirmed by static contact angle test after plasma treatment. Such plasma treatment resulted in a decrease in the advancing contact angle from $118^{\circ}$ to $60^{\circ}$. The interfacial adhesion between carbon fiber and CNT-phenolic composites increased by plasma treatment based on apparent modulus test results during quasi-static tensile strength. Furthermore, the proposed database offers valuable knowledge for evaluating interfacial shear strength (IFSS).

대기압 플라즈마 처리를 통해 탄소나노튜브(CNT) 표면은 개질 되며 개질된 입자의 표면과 탄소섬유 강화 CNT 페놀 복합재료간에 계면접착력에 변화를 확인하였다. CNT 표면에 플라즈마 처리에 따라 표면 변화가 발생되고 표면 개질의 결과를 확인하기 위해 FT-IR을 사용하였다. 또한, 정적 접촉각 실험법을 통해 플라즈마 처리에 따른 CNT의 젖음성을 비교 평가하였다. 순수 CNT 입자의 접촉각은 $118^{\circ}$ 였으나, 플라즈마 처리를 할 경우 $60^{\circ}$도로 표면 개질을 통해 젖음성이 향상됨을 확인하였다. 탄소섬유와 CNT-페놀복합재료 간 계면접착력은 플라즈마 처리에 따라 겉보기 강성도가 증가되는 결과를 확인하였으며, 음향방출 실험법과 전기저항 측정법을 병행한 이중기지평가법을 통해 계면전단강도 (IFSS)를 계산하여 계면접착력 향상을 확인하였다.

Keywords

References

  1. Iijima, S., "Helical microtubules of graphitic carbon," Nature, Vol. 354, 1991, pp. 56-58. https://doi.org/10.1038/354056a0
  2. Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., "Chemistry of carbon nanotubes," Chemical Reviews, Vol. 106, 2006, pp. 1105-1136. https://doi.org/10.1021/cr050569o
  3. Pegoretti, A., and Ricco, T., "Crack growth in discontinuous glass fibre reinforced polypropylene under dynamic and static loading conditions," Composites: Part A, Vol. 33, 2002, pp. 1539-1547. https://doi.org/10.1016/S1359-835X(02)00112-4
  4. 왕작가, 공조엘, 박종만, 이우일, 박종규, "미세역학적 실험법과 젖음성을 이용한 CNT-에폭시 나노복합재료 경사형 시편의 계면특성," 한국복합재료학회지, 제 22권, 제5호, 2009, pp. 8-14.
  5. Park, J.M., Kim, J.W., and Yoon, D.J., "Interfacial evaluation and microfailure mechanisms of single carbon fiber/bismaleimide (BMI) composites by tensile and compressive fragmentation tests and acoustic emission," Composites Science and Technology, Vol. 62(6), 2002, pp. 743-756. https://doi.org/10.1016/S0266-3538(02)00050-7
  6. Jung, T.H., Subramanian, R.V., and Manoranjan, V.S., "Prediction of fibre strength at the critical length: a simulation theory and experimental verification for bimodally distributed carbon fibre strengths," Journal of Materials Science, Vol. 28, 1993, pp. 4489-4496. https://doi.org/10.1007/BF01154961
  7. Drzal, L.T., Rich, M.J., Koeing, M.F., and Lloyd, P.F., "Adhesion of graphite fibers to epoxy matrices: II. The effect of fiber finish," The Journal of Adhesion, Vol. 16, 1983, pp. 133-152. https://doi.org/10.1080/00218468308074911
  8. Kelly, A., and Tyson, W.R., "Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum," Journal of the Mechanics and Physics of Solids, Vol. 13, No. 6, 1965, pp. 329-338. https://doi.org/10.1016/0022-5096(65)90035-9

Cited by

  1. Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites vol.26, pp.3, 2013, https://doi.org/10.7234/composres.2013.26.3.201
  2. Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface vol.25, pp.6, 2012, https://doi.org/10.7234/kscm.2012.25.6.205
  3. Microstructure and Ablation Performance of CNT-phenolic Nanocomposites vol.26, pp.5, 2013, https://doi.org/10.7234/composres.2013.26.5.309