DOI QR코드

DOI QR Code

Differences in Rice Quality and Physiochemical Component between Protox Inhibitor-Herbicide Resistant Transgenic Rice and Its Non-transgenic Counterpart

Protox 저해형 제초제 저항성 형질환벼와 비형질전환벼의 미질 및 이화학적 성분 차이

  • Jung, Ha-Il (Department of Crop and Soil Sciences, Cornell University) ;
  • Yun, Young-Beom (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University) ;
  • Kwon, Oh-Do (Jeonnam Agricultural Research and Extension Service) ;
  • Lee, Do-Jin (Department of Agricultural Education, Sunchon National University) ;
  • Back, Kyoung-Whan (Major in Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kuk, Yong-In (Dept. of Development in Resources, College of Life Science and Natural Resources, Sunchon National University)
  • 정하일 (코넬대학교 작물 및 토양학과) ;
  • 윤영범 (순천대학교 생명산업과학대학 자원식물개발학과) ;
  • 권오도 (전남농업기술원 쌀연구소) ;
  • 이도진 (순천대학교 사범대학 농업교육과) ;
  • 백경환 (전남대학교 농업생명과학대학 분자생물공학전공) ;
  • 국용인 (순천대학교 생명산업과학대학 자원식물개발학과)
  • Received : 2012.02.15
  • Accepted : 2012.03.20
  • Published : 2012.03.30

Abstract

Characteristics related to grain quality and physiochemical components such as mineral, total amino acid, free amino acid, and free sugar composition were investigated in Protox inhibitor resistanttransgenic rice (MX, PX, and AP37) and its nontransgenic counterpart (WT). Head rice, palatability, protein, and whiteness (except for MX and AP37) of milled transgenic rice were high or similar to those of the non-transgenic counterpart. Immature rice, unfilled grain, and cracked kernels (PX and AP37) of milled transgenic rice were lower than those of its non-transgenic counterpart. However, there were no significant differences in damaged grain between the transgenic rice lines and its counterpart. Potassium content in PX and copper contents in PX and AP37 were only low compared with their non-transgenic counterparts, but other mineral contents in transgenic rice lines were high or showed no significant differences compared with non-transgenic counterparts. Contents of most total amino acid composition in transgenic rice lines were high or similar to those in non-transgenic counterparts, but the content of isoleucine in AP37 was only low compared with its non-transgenic counterpart. On the other hand, free amino acid, leucine and tyrosine in PX and AP37, and total free amino acid in PX were low compared with their non-transgenic counterparts. However, the content of free amino acid in other kinds in transgenic rice lines were similar to those in their non-transgenic counterparts. Contents of sucrose in MX and PX were low compared with non-transgenic counterpars, but contents of fructose, glucose, and maltose in transgenic rice lines were high or similar compared with their non-transgenic counterparts. This results indicated that Protox genes had no negative affect on the nutritional composition of rice.

본 연구의 목적은 Protox 저해형 제초제 저항성인 형질전환벼계통(MX, PX, AP37)과 비형질전환벼(WT) 백미에 대한 미질, 무기물, 구성아미노산, 유리아미노산 및 유리당 함량을 조사하였다. 형질전환벼계통의 완전미, 식미값, 단백질 및 백도(MX와 AP37제외)는 비형질전환벼에 비해 높거나 유사하였고, 형질전환벼 계통의 분상질립, 균열립 및 쇄미(PX와 AP37제외)는 비형질전환벼에 비해 낮았다. 그러나 피해립과 아밀로스함량에서는 형질전환벼계통과 비형질전환벼간에 유의적인 차이가 없었다. PX의 K 함량과 PX와 AP37의 Cu 함량은 WT에 비해 적었을 뿐 일부 다른 무기물에서는 WT보다 형질전환벼계통에서 오히려 높거나 유의적인 차이가 없었다. 대부분 구성 아미노산 함량은 형질전환벼계통에서 WT에 비해 높았거나 유사하였고, 단지 AP37의 Isoleucine 함량만이 WT에 비해 적었다. 한편 유리아미노산 Leucine과 Tyrosine의 경우는 PX와 AP37에서 그리고 총 유리아미노산의 함량의 경우는 PX에서만 WT에 비해 유의적으로 감소하였다. 그러나 형질전환벼 계통의 다른 종류의 유리 아미노산 함량은 WT과 유사하였다. MX와 PX의 Sucrose 함량은 WT에 비해 적었으나 형질전환벼계통의 fructose, glucose 및 maltose 함량은 WT에 비해 높거나 유사하였다. 따라서 Protox 유전자는 벼의 양분구성에 부정적인 영향을 미치지 않는다고 할 수 있다.

Keywords

References

  1. AOAC. 1990. Official methods analysis 13th ed. Association of official analytical chemists Washington D.C. USA. p. 125-132.
  2. Cao, M. X., J.Q. Huang, Z. M. Wei, Q. H. Yao, C. Z. Wan, J. A. Lu. 2004. Engineering higher yield and herbicide resistance in rice by Agrobacteriummediated multiple gene transformation. Crop Sci. 44:2206-2213. https://doi.org/10.2135/cropsci2004.2206
  3. Culpepper, A. S., A. C. York, R. B. Batts, and K. M. Jennings. 2000. Weed management in glufosinateand glyphosate-resistant soybean (Glycine max). Weed Tech. 14:77-88. https://doi.org/10.1614/0890-037X(2000)014[0077:WMIGAG]2.0.CO;2
  4. De Block, M., D. De Brouwer, and P. Tenning. 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91:694-701. https://doi.org/10.1104/pp.91.2.694
  5. Ha, S. B., S. B. Lee, D. E. Lee, J. O. Guh, and K. Back. 2003. Transgenic rice plants expressing Bacillus subtilis protoporphyrinogen oxidase gene show low herbicide oxyfluorfen resistance. Biologia Plantarum 47:277-280.
  6. Ha, S. B., S. B. Lee, Y. Lee, K. Yang, N. Lee, S. M. Jang, J. S. Chung, S. Jung, Y. S. King, S. G. Wi, and K. Back. 2004. The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ. 27:79-88. https://doi.org/10.1046/j.0016-8025.2003.01127.x
  7. Han, J., Y. Yang, S. Chen, Z. Wang, X. Yang, G. Wang, and J. Men. 2005. Comparison of nutrient composition of parental rice and rice genetically modified with cowpea trypsin inhibitor in China. J. of Food Composition and Analysis 18:297-302. https://doi.org/10.1016/j.jfca.2004.11.001
  8. Hashimoto, W., K. Momma, and T. Katsube. 1999. Safety assesment of genetically engineered potatoes with designed soybean glycinin:compositional analyses of the potato tubers and digestibility of the newly expressed protein in transgenic potatoes. J. of Science and Food Agriculture 79:1607-1612. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1607::AID-JSFA408>3.0.CO;2-T
  9. Jeong, E. G., G. W. Yi, Y. J. Won, H. M. Park, N. S. Cheon, J. H. Choi, Y. C. Ku, C. D. Han, M. Y. Eun, T. S. Kim, and M. H. Nam. 2005. Agronomic characteristics of transgenic japonica rice "Milyang 204" with herbicide resistance gene (bar). Kor. J. Plant Biotechnol. 32:85-90. https://doi.org/10.5010/JPB.2005.32.2.085
  10. Jung, H. I., Y. I. Kuk, H. Y. Kim, K. Back, D. J. Lee, S. Lee, and N. R. Burgos. 2010. Resistance levels and fitness of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice in paddy fields. Field Crops Research 115:125-131. https://doi.org/10.1016/j.fcr.2009.10.010
  11. Jung, H. I., Y. I. Kuk, K. Back, and N. R. Burgos. 2008. Resistance pattern and antioxidant enzyme profiles of protoporphyrinogen oxidase (PROTOX) inhibitor-resistant transgenic rice. Pestic. Biochem. Physiol. 91:53-65. https://doi.org/10.1016/j.pestbp.2008.01.005
  12. Jung, S., Y. Lee, K. Yang, S. B. Lee, S. M. Jang, S. B. Ha, and K. Back. 2004. Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ. 27:1436-1446. https://doi.org/10.1111/j.1365-3040.2004.01247.x
  13. Kim, K. M., Y. I. Kuk, W. Kim, K. Back, J. O. Guh, and M. S. Shin. 2006. Quality of rice lines transformed with Protox gene of Bacillus subtilis. Korean J. Breed. 38(1):44-50.
  14. Krausz, R. F., G. Kapusta, J. L. Matthews, J. L. Baldwin, and J. Maschoff. 1999. Evaluation of glufosinate-ammonium-resistant corn (Zea mays) and glufosinate-ammonium:Efficacy on annual weeds. Weed Tech. 13:691-696. https://doi.org/10.1017/S0890037X00042093
  15. Kuk, Y. I., J. S. Shin, Y. B. Yun, and O. D. Kwon. 2010. Mechanism of growth inhibition in herbicideresistant transgenic rice overexpressing protoporphyrinogen oxidase (Protox) gene. Korean J. Weed Sci. 30(2):122-134. https://doi.org/10.5660/KJWS.2010.30.2.122
  16. Kwon O. D., B. Y. Moon, Y. I. Kuk, J. K. Kim and H. Y. Kim. 2006. Effect of densities of Echinochloa crus-galli and Monochoria vaginalis in wet seeding transplanting rice cultivation on rice yield and rice quality, and economic threshold levels of the weeds. Korean J. Weed Sci. 26(2):155-167.
  17. Kwon O. D., Y. I. Kuk, S. H. Cho and B. Y. Moon. 2007. Effect of densities of Echinochloa crus-galli and Cyperus difformis in transplanting rice cultivation on rice yield and rice quality, and economic threshold levels of the weeds. Korean J. Weed Sci. 27(2):102-111.
  18. Lee, Y., S. Jung, and K. Back. 2004. Expression of human protoporphyrinogen oxidase in transgenic rice induces both a photodynamic response and oxyfluorfen resistance. Pestic. Biochem. Physiol. 80: 65-74.
  19. Li, X., X. Y. He, Y. B. Luo, G. Y. Xiao, X. B. Jiang, and K. L. Huang. 2008. Comparative analysis of nutritional composition between herbicide-tolerant rice with bar gene and its non-transgenic counterpart. J. of Food Composition and Analysis. 21: 535-539. https://doi.org/10.1016/j.jfca.2008.06.001
  20. Oard, J. H., S. D. Linscombe, M. P. Braverman, F. Jodari, D. C. Blousin, M. Leech, A. Kohli, P. Vain, J. C. Cooley, and P. Christou. 1996. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol. Breed. 2:359-368. https://doi.org/10.1007/BF00437914
  21. Oberdoerfer, R. B., R. D. Shillito, M. De Beuckeleer, and D. H. Mitten. 2005. Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart. J. Agric. Food Chem. 53:1457-1465. https://doi.org/10.1021/jf0486500
  22. Ohara, I. and S. Ariyoshi. 1979. Comparison of protein precipitants for the determination of free amino acid in plasma. Agric. Biol. Chem. 43:1473-1478. https://doi.org/10.1271/bbb1961.43.1473
  23. Padgette, S. R., N. B. Taylor, D. L. Nilda, M. R. Bailey, et al. 1996. The composition of glyphosatetolerant soybean seeds is equivalent to that of conventional soybeans. Journal of Nutrition. 126: 702-716. https://doi.org/10.1093/jn/126.3.702
  24. [SAS] Statistical Analysis System. 2000. SAS/STAT Users Guide, Version 7. Cary, NC:Statistical Analysis Systems Institute, Electronic Version.
  25. Savarni, T. J., Y. Suzuki, J. B. Carr, G. T. McQuate, S. A. Ferreira, R. M. Manshardt, K. Y. Pitz. M. M. Wall, and D. Gonsalves. 2011. Nutritional composition of rainbow papaya, the first commercialized transgenic fruit crop. J. of Food Composition and Analysis. 24:140-147.
  26. Wilson, A. M., T. M. Work, A. A. Bushway. and R. J. Bushway. 1981. HPLC determination of fructose, glucose and sucrose in potatoes. J. Food Sci. 46:300-306. https://doi.org/10.1111/j.1365-2621.1981.tb14589.x
  27. Woo, S. J. and S. S. Ryoo. 1983. Preparation methods for atomic absorption and spectrophotometry of food samples. Korean J. Food Sci. Technol.. 15:225-231.
  28. Zhe, J., J. Deng, G. Li, Z. Zhang, and Z. Cai. 2010. Study on the compositional differences between transgenic and non-transgenic papaya (Carica papaya L.). J. of Food Composition and Analysis. 23:640-647. https://doi.org/10.1016/j.jfca.2010.03.004
  29. 조동삼. 1995. 벼의 생리와 생태. 향문사. pp. 335-349.

Cited by

  1. Regional Comparison of Physiochemical Properties of Codonopsis lanceolata vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.248
  2. Comparison of Growth Characteristics and Inorganic Components Between Korean and Japanese Codonopsis lanceolata vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.253
  3. Difference in Physiological Responses to Environmental Stress in Protox Inhibitor Herbicide-Resistant Transgenic Rice and Non-transgenic Rice vol.32, pp.1, 2012, https://doi.org/10.5660/KJWS.2012.32.1.35