DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Perilla frutescens (L.) Britton var. frutescens Extract in LPS-stimulated RAW 264.7 Macrophages

  • Lee, Hyun-Ah (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2012.05.07
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

This study was designed to investigate the inhibitory effects of Perilla frutescens (L.) Britton var. frutescens extract on the production of inflammation-related mediators (NO, ROS, NF-${\kappa}B$, iNOS and COX-2) and pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$, IL-6) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Perilla frutescents (L.) Britton var. frutescens was air-dried and extracted with ethanol. The extract dose-dependently decreased the generation of intracellular reactive oxygen species and dose-dependently increased antioxidant enzyme activities, such as superoxide dismutase, catalase and glutathione peroxidase in lipopolysaccharide stimulated RAW 264.7 macrophages. Also, Perilla frutescens (L.) Britton var. frutescens extract suppressed NO production in lipopolysaccharide-stimulated RAW 264.7 cells. The expressions of pro-inflammatory cytokines (TNF-${\alpha}$, IL-$1{\beta}$ and IL-6), NF-${\kappa}B$, iNOS and COX-2 were inhibited by the treatment with the extract. Thus, this study shows the Perilla frutescens (L.) Britton var. frutescens extract could be useful for inhibition of the inflammatory process.

Keywords

References

  1. Bendtzen K. 1988. Interleukin 1, interleukin 6 and tumor necrosis factor in infection, inflammation and immunity. Immunol Lett 19: 183-191. https://doi.org/10.1016/0165-2478(88)90141-1
  2. Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J. 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860-866. https://doi.org/10.1126/science.278.5339.860
  3. Szabo C. 1995. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz 3: 2-32.
  4. Kim AR, Cho JY, Zou Y, Choi JS, Chung HY. 2005. Flavonoids differentially modulate nitric oxide production pathways in lipopolysaccharide-activated RAW264.7 cells. Arch Pharm Res 28: 297-304. https://doi.org/10.1007/BF02977796
  5. Yoon S, Lee Y, Park SK, Kim H, Bae H, Kim HM, Ko S, Choi HY, Oh MS, Park W. 2009. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW264.7 macrophages. J Ethnopharmacol 125: 286-290. https://doi.org/10.1016/j.jep.2009.06.027
  6. Weinstein SL, Sanghera JS, Lemke K, DeFranco AL, Pelech SL. 1992. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen activated protein kinases in macrophages. J Biol Chem 267: 14955-14962.
  7. Paul A, Cuenda A, Bryant CE, Murray J, Chilvers ER, Cohen P, Gould GW, Plevin R. 1999. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclooxygenase-2 but not nitric oxide synthase in RAW 264.7 macrophages. Cell Signal 11: 491-497. https://doi.org/10.1016/S0898-6568(99)00018-2
  8. Murakama A. 2009. Chemoprevention with phytochemicals targeting inducibles nitric oxide synthase. Food factors for health promotion. Forum of Nutrition Basel Karger 61: 193-203. https://doi.org/10.1159/000212751
  9. Baeuerle PA, D Baltimore. 1996. NF-kappa B: ten years after. Cell 87: 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  10. Chung WY, Part JH, Kim MJ, Kim HO, Hwang JK, Lee SK. 2007. Xanthorrhizol inhibits 12-O-tetradecanoylphorbol- 13-acetate-induced acute inflammation and twostage mouse skin carcinogenesis by blocking the expression of arnithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kappa B. Carcinogenesis 28: 1224-1231. https://doi.org/10.1093/carcin/bgm005
  11. Meng L, Lozano YF, Gaydou EM, Li B. 2008. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules 14:133-140. https://doi.org/10.3390/molecules14010133
  12. Makino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y. 2003. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res 17: 240-243. https://doi.org/10.1002/ptr.1115
  13. Ueda H, Yamazaki C, Yamazaki M. 2003. Inhibitory effect of perilla leaf extract and luteolin on mouse skin tumor promotion. Biol Pharm Bull 26: 560-563. https://doi.org/10.1248/bpb.26.560
  14. Kim KH, Chang MW, Park KY, Rhee SH, Rhew TH, Sunwoo YL. 1993. Antitumor activity of phytol identified from perilla leaf and its augmentative effect on cellular immune response. Korean J Nutr 26: 379-389.
  15. Kim GJ, Kim YG, Kim HS. 1999. Effect of Perilla frutescens extract on the lipid peroxidation enzyme activities of serum in streptozotocin-induced rats. J Agric Tech & Dev Inst 3: 1-6.
  16. Lee HS, Lee HA, Hong CY, Yang SY, Lee KW, Hong SY, Park SR, Lee HJ. 2009. Quantification of caffeic acid and rosmarinic acid and antioxidant activities of hot-water extracts from leaves of Perilla frutescens. Korean J Food Sci Technol 41: 302-306.
  17. Mosmann T. 1983. Rapid colormetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A, Periquet A, Fernandez Y, Ktorza A, Casteilla L, Penicaud L. 2006. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55: 2084-2090. https://doi.org/10.2337/db06-0086
  19. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  20. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  21. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  22. D' Agostino P, Ferlazzo V, Milano S, La Rosa M, Di Bella G, Caruso R, Barbera C, Grimaudo S, Tolomeo M, Feo S, Cillari E. 2001. Anti-inflammatory effects of chemically modified tetracyclines by the inhibition of nitric oxide and inteleukin-12 synthesis in J774 cell line. Int Immunopharmacol 1: 1765-1776. https://doi.org/10.1016/S1567-5769(01)00100-X
  23. Kim EK. 2008. Purification and characterization of antioxidative peptides from enzymatic hydrolysates of venison. PhD Dissertation. Pusan National University, Busan, Korea.
  24. Kapp A. 1990. Reactive oxygen species and inflammation. Hautarzt 41: 196-203.
  25. Delaporte RH, Sanchez GM, Cuellar AC, Giuliani A, Palazzo de Mello JC. 2002. Anti-inflammatory activity and lipid peroxidation inhibition of iridoid lamiide isolated from Bouchea fluminensis (Vell.) Mold. (Verbenaceae). J Ethnopharmacol 82: 127-130. https://doi.org/10.1016/S0378-8741(02)00181-2
  26. Halliwell B, Hoult JR, Blake DR. 1988. Oxidants, inflammation and anti-inflammatory drugs. FASEB J 2: 2867-2873. https://doi.org/10.1096/fasebj.2.13.2844616
  27. Yao DC, Shi WB, Gou YL, Zhou XR, Tak YA, Zhou YK. 2005. Fatty acid-mediated intracellular iron translocation: a synergistic mechanism of oxidative injury. Free Radic Biol Med 39: 1385-1398. https://doi.org/10.1016/j.freeradbiomed.2005.07.015
  28. Bulkey GB. 1983. The role of oxygen free radicals in human disease processes. Surgery 94: 407-411.
  29. Yasui K, Baba A. 2006. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm Res 55: 359-363. https://doi.org/10.1007/s00011-006-5195-y
  30. Benhamou PY, Moriscot C, Richard MJ. 1998. Adenovirusmediated catalase gene transcription reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 41: 1093-1100. https://doi.org/10.1007/s001250051035
  31. Itzkowitz SH, Yio X. 2004. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287: 7-17. https://doi.org/10.1152/ajpgi.00079.2004
  32. Krol W, Czuba ZP, Threadgill MD, Cunningham BD, Pietsz G. 1995. Inhibition of nitric oxide (NO) production in murine macrophages by flavones. Biochem Pharmacol 50: 1031-1035. https://doi.org/10.1016/0006-2952(95)00237-T
  33. Munhoz CD, Garcia-Bueno B, Madrigal JLM, Lepsch LB, Scavone C, Leza JC. 2008. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Bruz J Med Biol Res 41: 1037-1046. https://doi.org/10.1590/S0100-879X2008001200001
  34. Li XA, Everson W, Smart EJ. 2006. Nitric oxide, caveolae and vascular pathology. Cardiovasc Toxicol 6: 1-13. https://doi.org/10.1385/CT:6:1:1
  35. Qureshi N, Vogel SN, Van Way C, Papasian CJ, Qureshi AA, Morrison DC. 2005. The proteasome: a central regulator of inflammation and macrophage function. Immunol Res 31: 243-260. https://doi.org/10.1385/IR:31:3:243
  36. Beutler B, Cerami A. 1989. The biology of cachectin/TNF-$\alpha$ primary mediator of the host response. Annu Rev Immunol 7: 625-655. https://doi.org/10.1146/annurev.iy.07.040189.003205
  37. Dinarello CA. 1999. Cytokines as endogenous pyrogens. J Infect Dis 179: 294-304. https://doi.org/10.1086/314577
  38. Hu XD, Yang Y, Zhong XG, Zhang XH, Zhang YN, Zheng ZP, Zhou Y, Tang W, Yang YF. 2008. Anti-inflammatory effects of Z23 on LPS-induced inflammatory responses in RAW 264.7 macrophage. J Ethnopharmacol 120: 447-451. https://doi.org/10.1016/j.jep.2008.09.026
  39. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. 2001. Possible new role for NF-${\kappa}B$ in the resolution of inflammation. Nat Med 7: 1291-1297. https://doi.org/10.1038/nm1201-1291
  40. Baldwin Jr AS. 1996. The NF-kappaB and I-kappaB proteins: newdiscoveries and insights. Annu Rev Immunol 14: 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  41. Ohshima H, Bartsch H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305: 253-264. https://doi.org/10.1016/0027-5107(94)90245-3

Cited by

  1. Effect of Pine needle Ethanol Extracts on the Inhibitory Activity of Atopic Dermatitis vol.28, pp.2, 2013, https://doi.org/10.7841/ksbbj.2013.28.2.123
  2. Anti-inflammatory Activity of Perilla frutescens Britton Seed in RAW 264.7 Macrophages and an Ulcerative Colitis Mouse Model vol.46, pp.1, 2014, https://doi.org/10.9721/KJFST.2014.46.1.61
  3. Effect ofPerilla frutescensExtracts on Porcine Jejunal Epithelial Cells vol.31, pp.2, 2017, https://doi.org/10.1002/ptr.5750
  4. Comparison of the Anti-Inflammatory Activities of Supercritical Carbon Dioxide versus Ethanol Extracts from Leaves of Perilla frutescens Britt. Radiation Mutant vol.22, pp.2, 2017, https://doi.org/10.3390/molecules22020311
  5. Antioxidant Activities of Perilla frutescens Britton Seed Extract and Its Inhibitory Effects against Major Characteristics of Cancer Cells vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.208
  6. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin vol.195, 2017, https://doi.org/10.1016/j.jep.2016.11.039
  7. The effect of air-bubble washing with natural sanitizers on microbial contamination and quality characteristics of perilla seeds vol.25, pp.7, 2018, https://doi.org/10.11002/kjfp.2018.25.7.797
  8. Anti-Arthritic Activities of Supercritical Carbon Dioxide Extract Derived from Radiation Mutant Perilla Frutescens Var. Crispa in Collagen Antibody-Induced Arthritis vol.11, pp.12, 2012, https://doi.org/10.3390/nu11122959
  9. 저장온도가 들깨의 품질특성 및 산화속도에 미치는 영향 vol.32, pp.6, 2012, https://doi.org/10.9799/ksfan.2019.32.6.669
  10. Perilla frutescens Britton var. frutescens leaves attenuate dextran sulfate sodium-induced acute colitis in mice and lipopolysaccharide-stimulated angiogenic processes in human umbilical vein endothel vol.29, pp.1, 2012, https://doi.org/10.1007/s10068-019-00711-8
  11. Tojapride prevents CaSR‐mediated NLRP3 inflammasome activation in oesophageal epithelium irritated by acidic bile salts vol.24, pp.2, 2012, https://doi.org/10.1111/jcmm.14631
  12. 자소엽(Perillae Folium) 열수추출물의 식물화학성분 연구 vol.51, pp.1, 2020, https://doi.org/10.22889/kjp.2020.51.1.055
  13. Extracts of Thai Perilla frutescens nutlets attenuate tumour necrosis factor-α-activated generation of microparticles, ICAM-1 and IL-6 in human endothelial cells vol.40, pp.5, 2012, https://doi.org/10.1042/bsr20192110
  14. Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton vol.20, pp.4, 2012, https://doi.org/10.17135/jdhs.2020.20.4.213
  15. Effect of rosmarinic acid on differentiation and mineralization of MC3T3-E1 osteoblastic cells on titanium surface vol.25, pp.1, 2012, https://doi.org/10.1080/19768354.2021.1886987