DOI QR코드

DOI QR Code

Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells

  • Jeon, Hui-Jeon (Department of Biomedical Science, CHA University) ;
  • Choi, Hyeon-Son (Department of Food Science and Biotechnology, CHA University) ;
  • Lee, OK-Hwan (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University) ;
  • Lee, Boo-Yong (Department of Food Science and Biotechnology, CHA University)
  • 투고 : 2012.04.23
  • 심사 : 2012.05.02
  • 발행 : 2012.06.30

초록

Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl- 1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

키워드

참고문헌

  1. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG. 2003. Marine natural products as novel antioxidant prototypes. J Nat Prod 66: 605-608. https://doi.org/10.1021/np0204038
  2. Thomas D. 2002. Seaweeds. The Natural History Museum, London, UK. p 15.
  3. Kützing FT. 1868. Tabulae phycologicae; oder, Abbildungen der Tange. Gedruckt auf Kosten des Verfassers, Nordhausen, Germany. Vol 18, p 1-35.
  4. Ratti C. 2001. Hot air and freeze-drying of high-value foods: a review. J Food Eng 49: 311-319. https://doi.org/10.1016/S0260-8774(00)00228-4
  5. Mongpraneet S, Abe T, Tsurusaki T. 2002. Accelerated drying of welsh onion by far infrared radiation under vacuum condition. J Food Eng 55: 147-156. https://doi.org/10.1016/S0260-8774(02)00058-4
  6. Yu BP. 1994. Cellular defenses against damage from reactive oxygen species. Physiol Rev 74: 139-162. https://doi.org/10.1152/physrev.1994.74.1.139
  7. Oliveira HCF, Cosso RG, Alberici LC, Maciel EN, Salerno AG, Dorighello GG, Velho JA de, Faria EC, Vercesi AE. 2005. Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria. FASEB J 19: 278-280. https://doi.org/10.1096/fj.04-2095fje
  8. Essick EE, Sam F. 2010. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev 3: 168-177. https://doi.org/10.4161/oxim.3.3.12106
  9. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. 2009. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89: 27-71. https://doi.org/10.1152/physrev.00014.2008
  10. Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H. 2003. Oversulfation of fucoidan enhances its anti-angiogenic and antitumor. Biochem Pharmacol 65: 173-179. https://doi.org/10.1016/S0006-2952(02)01478-8
  11. Cumashi A, Natalia AU, Marina EP, Armid D, Antonio P, Licia T, Nicola T, Galina EM, Albert EB, Maria IB, Anatolii IU, Nadezhda EU, Alexey AG, Craig JS, Maeve K, Gabriel AR, Stefano I, Nikolay EN. 2007. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541-552. https://doi.org/10.1093/glycob/cwm014
  12. Ponce NM, Pujol CA, Damonate EB, Flores ML, Stortz CA. 2003. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohyd Res 338: 153-165. https://doi.org/10.1016/S0008-6215(02)00403-2
  13. Heo SJ, Hwang JY, Choi JI, Lee SH, Park PJ, Kang DH, Oh C, Kim DW, Han JS, Jeon YJ, Kim HJ, Choi IW. 2010. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food Chem Toxicol 48: 1448-1454. https://doi.org/10.1016/j.fct.2010.02.025
  14. Chung HY, Choi HR, Park HJ, Choi JS, Choi WC. 2001. Peroxynitrite scavenging and cytoprotective activity of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether from the marine alga Symphyocladia latiuscula. J Agric Food Chem 49: 3614-3621. https://doi.org/10.1021/jf0101206
  15. Moure A, Cruz JM, Franco D, Dominguez JM, Sineiro J, Dominguez H, Nunez MJ, Parajo JC. 2001. Natural antioxidants from residual sources. Food Chem 72: 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
  16. Green H, Kehinde O. 1975. An established preadipose cell line and its differentiation in culture. Factors affecting the adipose conversion. Cell 5: 19-27. https://doi.org/10.1016/0092-8674(75)90087-2
  17. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. 2009. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284: 10601-10609. https://doi.org/10.1074/jbc.M808742200
  18. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239.
  19. Blosis MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  20. Gray JI, Dugan JLR. 1975. Inhibition of N-nitrosamine formation in a model food system. J Food Sci 40: 981-985. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  21. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I. 2003. Induction of adiponectin, a fat derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52: 1655-1663. https://doi.org/10.2337/diabetes.52.7.1655
  22. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomira I. 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114: 1752-1761. https://doi.org/10.1172/JCI21625
  23. SAS. 1998. SAS User's Guide. SAS Institute Inc, Cary, NC, USA.
  24. Considine GD. 2005. Ethyl Alcohol, Van Nostrand's Encyclopedia of Chemistry. 5th ed. Wiley-Interscience, Hoboken, NJ, USA. p 588.
  25. Afzal TM, Abe T. 1998. Diffusion in potato during far infrared radiation drying. J Food Eng 37: 353-365. https://doi.org/10.1016/S0260-8774(98)00111-3
  26. Arun S, Mujumder, Law LC. 2010. Drying technology: trends and application in postharvest processing. Food Bioprocess Technol 3: 843-852. https://doi.org/10.1007/s11947-010-0353-1
  27. Leonard A, Blacher S, Nimmol C, Devahastin S. 2008. Effect of far-infrared radiation assisted drying on microstructure of banana slices: An illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85: 154-162. https://doi.org/10.1016/j.jfoodeng.2007.07.017
  28. Yaldyz O, Ertekyn C. 2001. Thin layer solar drying of some vegetables. Dry Technol 19: 583-597. https://doi.org/10.1081/DRT-100103936
  29. Lee SH, Jeon YJ. 2010. Effects of far infrared radiation drying on antioxidant and anticoagulant activities of Ecklonia cava extracts. J Korean Soc Appl Biol Chem 53: 175-183. https://doi.org/10.3839/jksabc.2010.029
  30. Lee SH, Ko SC, Kang SM, Cha SH, Ahn GN, Um BH, Jeon YJ. 2010. Antioxidative effect of Ecklonia cava dried by far infrared radiation drying. Food Sci Biotechnol 19: 129-135. https://doi.org/10.1007/s10068-010-0018-x
  31. Urquiaga I, Leighton F. 2000. Plant polyphenol antioxidants and oxidative stress. Biol Res 33: 55-64.
  32. Catherine A, Evans R, Miller NJ, Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  33. Lee OH, Seo MJ, Choi HS, Lee BY. 2012. Pycnogenol inhibits lipid accumulation in 3T3-L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme response. Phytother Res 26: 403-411.
  34. Jung CH, Kim JH, Park SJ, Kweon DH, Kim SH, Ko SG. 2010. Inhibitory effect of Agrimonia pilosa Ledeb on inflammation by suppression of iNOS and ROS production. Immunol Invest 39: 159-170. https://doi.org/10.3109/08820130903501790

피인용 문헌

  1. Gelidium elegans, an Edible Red Seaweed, and Hesperidin Inhibit Lipid Accumulation and Production of Reactive Oxygen Species and Reactive Nitrogen Species in 3T3-L1 and RAW264.7 Cells vol.28, pp.11, 2014, https://doi.org/10.1002/ptr.5186
  2. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line vol.163, 2016, https://doi.org/10.1016/j.jphotobiol.2016.08.026
  3. Macroalgae of Izmir Gulf: Dictyotaceae exhibit high in vitro anti-cancer activity independent from their antioxidant capabilities vol.68, pp.6, 2016, https://doi.org/10.1007/s10616-016-9991-0
  4. Assessing in vivo digestibility and effects on immune system of sheep fed alfalfa hay supplemented with a fixed amount of Ulva rigida and Gracilaria vermiculophylla vol.29, pp.2, 2017, https://doi.org/10.1007/s10811-016-0999-9
  5. The Effects of High Temperature High Pressure Steam Sterilization on Woohwangchungsimwon vol.25, pp.1, 2015, https://doi.org/10.18325/jkmr.2015.25.1.045
  6. Anti-oxidative and Anti-inflammatory Effect of 7 Herbal Extracts and Methods of Herbal Formula Compositioning vol.22, pp.2, 2014, https://doi.org/10.14374/HFS.2014.22.2.087
  7. A synthetic Nitraria alkaloid, isonitramine protects pancreatic β-cell and attenuates postprandial hyperglycemia vol.70, 2017, https://doi.org/10.1016/j.metabol.2017.02.002
  8. Efficacy and safety of Gelidium elegans intake on bowel symptoms in obese adults : A 12-week randomized double-blind placebo-controlled trial vol.98, pp.17, 2012, https://doi.org/10.1097/md.0000000000014981
  9. Antiviral Effects of Ethyl Acetate Fraction of Distylium racemosum Leaf Extract on Adenovirus 36 vol.30, pp.3, 2012, https://doi.org/10.5352/jls.2020.30.3.221