DOI QR코드

DOI QR Code

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft

태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구

  • Received : 2012.02.21
  • Accepted : 2012.05.17
  • Published : 2012.06.01

Abstract

Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

태양광 추진 항공기는 감시, 지구 모니터링, 통신 등에 대기 오염 없이 그리고 가까운 장래에 인공위성과의 가격 경쟁력까지 갖추게 될 수 있어 미래의 고고도 장기체공 임무수행을 위해 더욱더 그 중요성이 증대되고 있다. 그러나 전통적인 항공기 사이징 방법들은 태양광 추진 항공기에 바로 적용될 수 없다. 본 연구에서는 다양한 동력 시스템 구성품들이 태양광 추진 장기 체공 항공기의 사이징에 어떤 영향을 미치는지를 파악하기 위하여 에너지 균형 및 구속조건 연구를 수행하였다. 본 연구에서는 동력 생성과 연료전지의 재생 에너지 저장을 위한 광전지 모듈을 동력 시스템 구성품으로 고려하였다. 또한 본 연구 결과를 검증하기 위해 고고도 무인기에 이 새로운 사이징 기법을 적용하여 결과를 제시하였다.

Keywords

References

  1. National Research Council (NRC), Commercial Supersonic Technology:The Way Ahead. National Academic Press, 2001.
  2. T. Nam, K. Shih and D. Mavris, "Assessment of Environmental and Regulatory Uncertainty Impacts on Propulsion System Design," AIAA-2003-6805, AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum, Denver, Colorado, Nov. 17-19, 2003
  3. Climate Change 2007, the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC)
  4. Guynn, M. D., Freeh, J. E., and Olson, E. D., "Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions," Tech. Rep. NASA/TM-2004-212989, NASA, 2004.
  5. Cuffie, J. A. and Beckman, W. A., Solar Engineering of Thermal Processes, 1991, Second edition, John Wiley & Sons.
  6. Rizzo, E. and Frediani, A., "A Model for Solar Powered Aircraft Preliminary Design," in XVIII Congresso Nazionale Aidaa, 2005.
  7. Colozza, A. J., "Effect of Date and Location on Maximum Achievable Altitude for a Solar Powered Aircraft," Tech. Rep. NASA/CR-202326, NASA, March 1997.
  8. Colozza, A. J., "Effect of Power System Technology and Mission Requirements on High Altitude Long Duration Aircraft," Tech. Rep. NASA/CR-194455, NASA, 1994.
  9. Reinhardt, K. C., Lamp, T. R., Geis, J. W., and Colozza, A. J., "Solar-Powered Unmanned Aerial Vehicles," in IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, vol. 1, pp. 41-46, 1996.
  10. Dornheim, M. A., "Get Me Through the Night," Aviation Week & Space Technology, vol. 159, pp. 66-70, September 15, 2003.
  11. T. Nam, "A Generalized Sizing Method for Revolutionary Concepts under Probabilistic Design Constraints," Ph.D thesis, Georgia Institute of Technology, 2007.
  12. Romeo, G., Frulia, G., Cestino, E., and Corsino, G., "Heliplat: Design, Aerodynamic, Structural Analysis of Long-Endurance Solar-Powered Stratospheric Platform," Journal of Aircraft, vol. 41. 1505-1520, 2004. https://doi.org/10.2514/1.2723

Cited by

  1. Initial Sizing of a Glider Type High Altitude Long Endurance Unmanned Aerial Vehicle Using Alternative Energy vol.42, pp.1, 2014, https://doi.org/10.5139/JKSAS.2014.42.1.47