DOI QR코드

DOI QR Code

액체로켓 연소기 노즐확장부 제작 및 재료 기술 동향

A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber of Liquid Rocket

  • 이금오 (한국항공우주연구원 연소기팀) ;
  • 유철성 (한국항공우주연구원 연소기팀) ;
  • 최환석 (한국항공우주연구원 연소기팀)
  • 투고 : 2011.11.29
  • 심사 : 2012.04.25
  • 발행 : 2012.06.01

초록

액체 로켓 엔진의 연소기는 높은 온도의 연소가스를 발생시키므로 연소실과 노즐은 열적으로 보호되어야 한다. 상단용 엔진의 노즐확장부는 큰 노즐 팽창비를 갖기 때문에 무게가 발사체 성능에 미치는 영향이 크므로 경량 내열 소재가 개발되어 사용되어 왔다. 가스 냉각 방식은 이전에는 널리 사용되었으나 지금은 잘 사용되지 않으며, 니오븀 합금이나 니켈 기반 초합금, 세라믹 복합재를 사용하는 복사 냉각 방식과 흡열 냉각 방식은 지금까지도 발사체 상단에 많이 사용되고 있다.

The combustion chamber and nozzle of a liquid rocket engine should be protected from the high temperature combustion gas generated by the chamber. An upper-stage nozzle extension has a large expansion ratio, therefore, The light-weight refractory materials have been used since the weight impact on the launcher performance is crucial. Gas film cooling method was used before, but was not applicable nowadays. Ablative cooling method and radiative cooling method with niobium alloy, Ni-based superalloy and ceramic based composite have been used to this day.

키워드

참고문헌

  1. "Liquid Rocket Engine Nozzles," NASA SP-8120, published by NASA, Washington D.C., 1976
  2. http://history.msfc.nasa.gov/saturn_apollo/documents/F-1_Engine.pdf
  3. Walter F. Dankhoff, "The M-1 Rocket Engine Project," NASA TM X-50854, 1963
  4. http://www.titan2icbm.org/titanD.html
  5. http://www.flickr.com/photos/jurvetson/4464220730/
  6. http://en.wikipedia.org/wiki/RS-68
  7. Stechman, R. C., "Advanced Thrust Chamber Materials for Earth Storable Bipropellant Rocket Engines ", Acta Astronautica, Vol. 29, No. 2, 1993, pp. 109-115 https://doi.org/10.1016/0094-5765(93)90028-U
  8. http://en.wikipedia.org/wiki/Apollo_Command/Service_Module
  9. http://www.collectspace.com/ubb/Forum35/HTML/000454.html
  10. http://www.friends-partners.org/oldfriends/jgreen/blockd.html
  11. http://onorbit.com/node/2178
  12. Breede, F. and Friess, M., "Development of Advanced CMC Materials for Dual-bell Rocket Nozzles," Sonderforschungsbereich Transregio 40, Jahresbericht, 2009
  13. Captain Steven Steel, "Ceramic Materials for Reusable Liquid Fueled Rocket Engine Combustion Devices," Materials in Space, The AMPTIAC Quarterly, Vol. 8, No. 1, 2004, pp.39-43
  14. http://www.pw.utc.com/products/pwr/propulsion_solutions/rl10.asp
  15. http://cs.astrium.eads.net/sp/launcher-propulsion/rocket-engines/vinci-rocket-engine.html
  16. http://www.russianspaceweb.com/rd0146.html
  17. http://www.energia.ru/english/energia/launchers/engines.html
  18. http://cs.astrium.eads.net/sp/launcher-propulsion/rocket-engines/aestus-rocket-engine.html
  19. Pichon, T., Lacombe, A., Joyez, P., Ellis, R., Humbert, S., Payne, F.M., "RL10B-Nozzle extension assembly improvements for Delta IV," AIAA-2001-3549, 2001
  20. Sololovsky, M.I., Petukhov, S. N., Semuyonov, Yu. P. and Sokolov, B. A., "Development of carbon-carbon nozzle extension for liquid fuel rocket motors," Thermophysics and Aeromechanics, Vol. 15, No. 4, 2008, pp.671-677
  21. Schmidt, S., Beyer, S., Knave, H., Immich, H., Meitring, R. and Gessler, A., "Advanced ceramic matrix composite materials for current and future propulsion technology application," Acta Astronautica, Vol. 55, Issues 3-9, 2004, pp. 409-420 https://doi.org/10.1016/j.actaastro.2004.05.052
  22. Lightweight Nozzle Extensions for Liquid Rocket Engine, NASA SBIR 2007 Solicitation, 07-2 X9.04-9517 Proposal, 2007