RINGS OVER WHICH POLYNOMIAL RINGS ARE ARMENDARIZ AND REVERSIBLE

Jung Ho Ahn, Min Jeong Choi, Si Ra Choi, Won Seok Jeong, Jung Soo Kim, Jeong Yeol Lee, Soon Ji Lee, Young
Sun Lee, Dong Hyun Noh, Yu Seung Noh, Gyeong Hyeon
Park, Chang Ik Lee* and Yang Lee

Abstract

A ring R is called reversibly Armendariz if $b_{j} a_{i}=0$ for all i, j whenever $f(x) g(x)=0$ for two polynomials $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ over R. It is proved that a ring R is reversibly Armendariz if and only if its polynomial ring is reversibly Armendariz if and only if its Laurent polynomial ring is reversibly Armendariz. Relations between reversibly Armendariz rings and related ring properties are examined in this note, observing the structures of many examples concerned. Various kinds of reversibly Armendariz rings are provided in the process. Especially it is shown to be possible to construct reversibly Armendariz rings from given any Armendariz rings.

1. Reversibly Armendariz rings

Throughout this section every ring is associative (possibly without identity). Let R be a ring. The polynomial ring with an indeterminate x over R is denoted by $R[x]$. $C_{f(x)}$ denotes the set of all coefficients of $f(x) \in R[x]$. The n by n full (resp. upper triangular) matrix ring over R is denoted by $\operatorname{Mat}_{n}(R)$ (resp. $U_{n}(R)$). Use $e_{i j}$ for the matrix with (i, j)-entry 1 and elsewhere 0 . Let $\mathbb{Z}\left(\mathbb{Z}_{n}\right)$ denotes the ring of integers (modulo n).

A ring is usually called reduced if it has no nonzero nilpotent elements. Following Rege and Chhawchharia [19], a ring R is called Armendariz

[^0]if $a b=0$ for all $a \in C_{f(x)}$ and $b \in C_{g(x)}$ whenever any two polynomials $f(x), g(x) \in R[x]$ satisfy $f(x) g(x)=0$. This nomenclature was used by them since it was Armendariz [4, Lemma 1] who initially showed that a reduced ring always satisfies this condition. It is obvious that the class of Armendariz rings is closed under subrings.

A ring is usually called Abelian if every idempotent is central. Reduced rings are clearly Abelian.

According to Cohn [6], a ring R is called reversible if $a b=0$ implies $b a=0$ for $a, b \in R$. Anderson and Camillo [2], observing the rings whose zero products commute, used the term $Z C_{2}$ for what is called reversible; while Krempa and Niewieczerzal [13] took the term C_{0} for it. It is obvious that the class of reversible rings is closed under subrings. Liu and Yang [17] called a ring R strongly reversible if $g(x) f(x)=0$ whenever polynomials $f(x), g(x) \in R[x]$ satisfy $f(x) g(x)=0$. Note that R is strongly reversible if and only if $R[x]$ is reversible. Strongly reversible rings are clearly reversible but the converse need not hold by [11, Example 2.1].

Lambek introduced the concept of a symmetric right ideal, unifying the sheaf representation of commutative rings and reduced rings in [15]. Lambek called a right ideal I of a ring R symmetric if $r s t \in I$ implies $r t s \in I$ for all $r, s, t \in R$. If the zero ideal is symmetric then R is usually called symmetric; while Anderson and Camillo [1] used the term $Z C_{3}$ for this concept. It is proved by Lambek that a ring R is symmetric if and only if $r_{1} r_{2} \cdots r_{n}=0$ implies $r_{\sigma(1)} r_{\sigma(2)} \cdots r_{\sigma(n)}=0$ for any permutation σ of the set $\{1,2, \ldots, n\}$, where $n \geq 1$ and $r_{i} \in R$ for all i in [15, Proposition 1]. Anderson-Camillo also obtained this result independently in [1, Theorem I.1]. It is evident that commutative rings are both symmetric and reversible. Reduced rings are both symmetric and reversible by [1, Theorem I.3], but there are many kinds of non-reduced commutative rings.

As we noted above, reduced rings are both Armendariz and reversible. We adapt this fact to the following new concept. In this note a ring R shall be called reversibly Armendariz if

$$
\begin{aligned}
& b_{j} a_{i}=0 \text { for all } i, j \text { whenever } f(x) g(x)=0 \\
& \text { for } f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x] .
\end{aligned}
$$

It is obvious that the class of reversibly Armendariz rings is closed under subrings. Anderson and Camillo [1, Theorem 2] showed that a
ring R is Armendariz if and only if $R[x]$ is Armendariz. While, Kim and Lee [11, Example 2.1] showed that polynomial rings over reversible rings need not be reversible. But if R is reversibly Armendariz, then $R[x]$ is also reversibly Armendariz as we see in the following.

Proposition 1.1. Given a ring R the following conditions are equivalent:
(1) R is reversibly Armendariz;
(2) R is both strongly reversible and Armendariz;
(3) R is both reversible and Armendariz;
(4) $R[x]$ is both reversible and Armendariz; and
(5) $R[x]$ is reversibly Armendariz.

Proof. $(2) \Rightarrow(3) \Rightarrow(1)$ and $(4) \Rightarrow(3)$ are obvious.
$(1) \Rightarrow(2)$: Let R be a reversibly Armendariz ring and $f(x) g(x)=0$ where $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$. Then $b_{j} a_{i}=0$ for any i and j. Thus,

$$
g(x) f(x)=\sum_{k=0}^{m+n}\left(\sum_{i+j=k} b_{j} a_{i}\right) x^{k}=0,
$$

entailing that $R[x]$ is reversible (i.e., R is strongly reversible). Moreover, we have that $a_{i} b_{j}=0$ for any i and j since R is reversible, entailing that R is Armendariz.
$(3) \Rightarrow(4)$: Let R be both reversible and Armendariz. Then $R[x]$ is Armendariz by [1, Theorem 2]. Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in$ $R[x]$ satisfy $f(x) g(x)=0$. Since R is Armendariz, $a_{i} b_{j}=0$ for all i, j, but since R is reversible we moreover have $b_{j} a_{i}=0$ for all i, j. This implies that $R[x]$ is reversible.
$(4) \Leftrightarrow(5)$ is the same as $(1) \Leftrightarrow(3)$.
Reduced rings are clearly reversibly Armendariz, but the converse does not hold in general as can be seen by $S=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in R\right\}$ over a reduced ring R. Indeed, S is reversibly Armendariz by [11, Proposition 2], [12, Proposition 1.6], and Proposition 1.1. We will use Proposition 1.1 without mention.

Proposition 1.2. Let R be a ring and I be a proper ideal of R satisfying that R / I is a reversibly Armendariz ring. If I is a reduced ring then R is reversibly Armendariz.

Proof. Suppose that R / I is a reversibly Armendariz ring and I is a reduced ring. Then R is reversibly Armendariz by [9, Theorem 11] and [12, Proposition 1.12].

The ring $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in R\right\}$ over a reduced ring R is reversibly Armendariz as we see above. Combining this and Proposition 1.2, one may conjecture that R is a reversibly Armendariz ring if R / I is reversibly Armendariz for any proper ideal I of R which is reversibly Armendariz as a ring. However the following example erases the possibility.

Example 1.3. The argument is essentially due to [12, Example 1.11] and [14, Example 2.9]. Let F be any field and consider

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c \in F\right\} .
$$

Then R is Armendariz by [11, Proposition 2], but R is not reversibly Armendariz since R is not reversible as can be seen by $m e_{12} n e_{23}=$ $m n e_{13} \neq 0$ for $m, n \in F \backslash 0$ and $n e_{23} m e_{12}=0$. Note that the following are all nonzero proper ideals in R :

$$
I_{1}=\left(\begin{array}{lll}
0 & F & F \\
0 & 0 & F \\
0 & 0 & 0
\end{array}\right), I_{2}=\left(\begin{array}{ccc}
0 & F & F \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), I_{3}=\left(\begin{array}{lll}
0 & 0 & F \\
0 & 0 & F \\
0 & 0 & 0
\end{array}\right), I_{4}=\left(\begin{array}{lll}
0 & 0 & F \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

and

$$
I_{5}=\left\{\left.\left(\begin{array}{ccc}
0 & \alpha b & c \\
0 & 0 & \alpha d \\
0 & 0 & 0
\end{array}\right) \right\rvert\, b, c, d, \alpha \in F \text { and } b \neq 0, d \neq 0 \text { are fixed }\right\} .
$$

I_{1} and I_{5} are not reversible as can be seen by $(\alpha b) e_{12}(\alpha d) e_{23} \neq 0$ when $\alpha \neq 0$ and $(\alpha d) e_{23}(\alpha b) e_{12}=0$. But I_{2}, I_{3}, I_{4} are all reversibly Armendariz since they are nilpotent of index $2 . R / I_{2}$ and R / I_{3} are both isomorphic to $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in F\right\}$, so they are reversibly Armendariz. The ring R / I_{4} is reversible by [12, Example 1.11]. Moreover R / I_{4} is isomorphic to $\left\{\left.\left(\begin{array}{ccc}a & b & c \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c \in F\right\}$, entailing that R / I_{4} is Armendariz.

Armendariz rings need not be reversible as we see in the preceding example. But we can always obtain reversibly Armendariz rings from given any Armendariz ring.

Proposition 1.4. Let R be an Armendariz ring and $Z(R)$ be the center of R. Let S be a subring of $Z(R)$, and N be a nilpotent ideal of R with $N^{2}=0$. Then $S+N$ is a reversibly Armendariz ring.

Proof. Let $T=S+N$. Note that T forms a subring of R, and so T is clearly Armendariz. Let $(a+m)(b+n)=0$ for $a, b \in S$ and $m, n \in N$. Then $0=(a+m)(b+n)=a b+a n+m b=b a+n a+b m=$ $b a+n a+b m+n m=(b+n)(a+m)$; hence T is reversible.

The ring R in Example 1.3 is Armendariz but not reversible. Let $S=$ $\left\{\left.\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right) \right\rvert\, a \in Z(D)\right\} \subseteq Z(R)$ and $N=\left\{\left.\left(\begin{array}{lll}0 & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \right\rvert\, b, c \in D\right\}$. Then $S+N$ is reversibly Armendariz by Proposition 1.4.

2. Examples of reversibly Armendariz rings

Throughout this section every ring is associative with identity unless otherwise stated. Given a ring $R, N_{*}(R), N^{*}(R)$, and $N(R)$ denote the prime radical, the upper nilradical (i.e., sum of nil ideals), and the set of all nilpotent elements in R, respectively. Based on Artin and Wedderburn, the sum of all nilpotent ideals in R, written by $N_{0}(R)$, is called the Wedderburn radical of R (in spite of this sum being not a radical, it was given the name). It is well-known that $N_{0}(R) \subseteq N_{*}(R) \subseteq$ $N^{*}(R) \subseteq N(R)$. We first observe nilradicals of reversibly Armendariz rings.

Proposition 2.1. If R is a reversibly Armendariz ring then $N(R[x])=$ $N^{*}(R[x])=N_{*}(R[x])=N_{0}(R[x])=N(R)[x]=N^{*}(R)[x]=N_{*}(R)[x]=$ $N_{0}(R)[x]$.

Proof. Let R be a reversibly Armendariz ring. For any ring A we have $N_{0}(A)[x]=N_{0}(A[x])$ by [5, Corollary 5]. Since R is Armendariz, we get $N(A)[x]=N(A[x])$ and $N^{*}(R)[x]=N_{0}(R)[x]=N_{*}(R)[x]$ by [2, Corollary 5.2] and [10, Lemma 2.3(5)], respectively. Since R is reversible,
we get $N_{*}(R)=N^{*}(R)=N(R)$ through a simple computation. Now combining these all, we finally obtain

$$
\begin{aligned}
& N(R[x])=N^{*}(R[x])=N_{*}(R[x])=N_{0}(R[x]) \\
& =N(R)[x]=N^{*}(R)[x]=N_{*}(R)[x]=N_{0}(R)[x] .
\end{aligned}
$$

Armendariz rings are Abelian by the proof of [1, Theorem 6] or [9, Corollary 8]. Symmetric rings are obviously reversible, however the converse need not be true by [1, Example I.5] or [18, Examples 5 and 7].

By Proposition 1.1, reversibly Armendariz rings are strongly reversible. The following shows that Armendariz and strongly reversible are independent of each other.

Example 2.2. (1) The argument here is essentially due to [16, Example 3.2]. Let $A=\mathbb{Z}_{3}[x, y]$ be the polynomial ring with two indeterminates x, y over \mathbb{Z}_{3}. Note that I is the ideal of $\mathbb{Z}_{3}[x, y]$ generated by $x^{3}, x^{2} y^{2}$ and y^{3}. Next consider $R=A / I$ and identify x and y with their images in R for simplicity. Then R is commutative and so strongly reversible. Let $f(t)=x+y t, g(t)=x^{2}+2 x y t+y^{2} t^{2} \in R[t]$, where $R[t]$ is the polynomial ring with an indeterminate t over R. Then $f(t) g(t)=0$, but $x y^{2} \neq 0$. This implies that R is not Armendariz.
(2) Let K be a field and $A=K\langle a, b\rangle$ be the free algebra with noncommuting indeterminates a, b over K. Let I be the ideal of A generated by $a b$. Then the factor ring A / I is Armendariz but not reversible by [3, Example 4.10].
(3) $T=\left\{\left.\left(\begin{array}{lll}a & b & c \\ 0 & a & d \\ 0 & 0 & a\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}$ where R is a reduced ring is an Armendariz ring but not reversibly Armendariz. T is Armendariz by [11, Proposition 2], but not reversible by the following computation:
$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \neq 0$ and $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=0$.
Symmetric rings are reversible. We see a symmetric ring but not (reversibly) Armendariz in the following.

Example 2.3. We refer to the argument in [9, Example 2] and [12, Example 2.1]. Let $A=\mathbb{Z}_{2}\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c\right\}$ be the free algebra of polynomials with zero constant terms in noncommuting indeterminates
$a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c$ over \mathbb{Z}_{2}. Note that A is a ring without identity and consider an ideal of the ring $\mathbb{Z}_{2}+A$, say I, generated by

$$
\begin{gathered}
a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, a_{1} b_{2}+a_{2} b_{1}, a_{2} b_{2}, a_{0} r b_{0}, a_{2} r b_{2}, \\
b_{0} a_{0}, b_{0} a_{1}+b_{1} a_{0}, b_{0} a_{2}+b_{1} a_{1}+b_{2} a_{0}, b_{1} a_{2}+b_{2} a_{1}, b_{2} a_{2}, b_{0} r a_{0}, b_{2} r a_{2}, \\
\left(a_{0}+a_{1}+a_{2}\right) r\left(b_{0}+b_{1}+b_{2}\right),\left(b_{0}+b_{1}+b_{2}\right) r\left(a_{0}+a_{1}+a_{2}\right), \text { and } \\
r_{1} r_{2} r_{3} r_{4},
\end{gathered}
$$

where $r, r_{1}, r_{2}, r_{3}, r_{4} \in A$. Then clearly $A^{4} \in I$. Next let $R=\left(\mathbb{Z}_{2}+A\right) / I$ and identify a_{i}, b_{j} and c with their images in R for simplicity. Note that R is symmetric by the method of [8, Example 3.1]. But since $\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right)=0$ and $b_{1} a_{0} \neq 0, R$ is not reversibly Armendariz.

In the following we see the basic examples of reversibly Armendariz rings. Given a ring R and $n \geq 2$, consider the following two kinds of subrings of $U_{n}(R)$:

$$
D_{n}(R)=\left\{\left(m_{i j}\right) \in U_{n}(R) \mid m_{11}=\cdots=m_{n n}\right\} ;
$$

and

$$
\begin{aligned}
& V_{n}(R)=\left\{\left(m_{i j}\right) \in D_{n}(R) \mid m_{s t}=m_{(s+1)(t+1)} \text { for } s=1, \ldots, n-2\right. \\
&\text { and } t=2, \ldots, n-1\} .
\end{aligned}
$$

Proposition 2.4. Let R be a reduced ring.
(1) $D_{2}(R)$ is reversibly Armendariz.
(2) $R[x] /\left(x^{n}\right)$ is reversibly Armendariz, where $\left(x^{n}\right)$ is the ideal of $R[x]$ generated by x^{n}.
(3) $V_{n}(R)$ is reversibly Armendariz.

Proof. (1) $D_{2}(R)$ is both Armendariz and reversible by [11, Proposition 2] and [12, Proposition 1.6]. Thus $D_{2}(R)$ is reversibly Armendariz by Proposition 1.1.
(2) $R[x] /\left(x^{n}\right)$ is both Armendariz and reversible by [1, Theorem 5] and [12, Proposition 2.5]. Thus $R[x] /\left(x^{n}\right)$ is reversibly Armendariz by Proposition 1.1.
(3) It is well-known that $V_{n}(R)$ is isomorphic to $R[x] /\left(x^{n}\right)$ as rings. So (2) implies (3).

By Proposition 2.4(1), one may conjecture that if R is reversibly Armendariz then so is $D_{2}(R)$. However the following example eliminates the possibility.

Example 2.5. We use the ring in [12, Example 1.7]. Let \mathbb{H} be the Hamilton quaternions over the real number field and $R=D_{2}(\mathbb{H})$. Then R is reversibly Armendariz by Proposition 2.4(1). However $D_{2}(R)$ is not reversible by the computation of [12, Example 1.7].

We consider several basic properties of reversibly Armendariz rings as follows.

Proposition 2.6. (1) Any direct product of reversibly Armendariz rings is reversibly Armendariz.
(2) Any subdirect product of reversibly Armendariz rings is reversibly Armendariz.
(3) The class of reversibly Armendariz rings is closed under direct limits.

Proof. (1) Let R be the direct product of R_{i} where $\left\{R_{i} \mid i \in I\right\}$ is a set of reversibly Armendariz rings. Suppose $f(x) g(x)=0$ with $f(x)=\sum_{j=0}^{m}\left(a(j)_{i}\right) x^{j}, g(x)=\sum_{k=0}^{n}\left(b(k)_{i}\right) x^{k} \in R[x]$. Letting $f_{i}(x)=$ $\sum_{j=0}^{m} a(j)_{i} x^{j}$ and $g_{i}(x)=\sum_{k=0}^{n} b(k)_{i} x^{k}$ we can write $f(x)=\left(f_{i}(x)\right)$ and $g(x)=\left(g_{i}(x)\right)$. Note that $f_{i}(x) g_{i}(x)=0$ for all i. Since R_{i} is reversibly Armendariz for all $i, b(k)_{i} a(j)_{i}=0$ for all i, j, k, hence $\left(b(k)_{i}\right)\left(a(j)_{i}\right)=0$ for all i, j, k. Therefore R is reversibly Armendariz.
(2) A subdirect product is a subring of a direct product, and so the result comes from (1).
(3) Let $D=\left\{R_{i}, \alpha_{i j}\right\}$ be a direct system of reversibly Armendariz rings R_{i} for $i \in I$ and ring homomorphisms $\alpha_{i j}: R_{i} \rightarrow R_{j}$ for each $i \leq j$ satisfying $\alpha_{i j}(1)=1$, where I is a directed partially ordered set. Set $R=\underline{\lim } R_{i}$ be the direct limit of D with $\iota_{i}: R_{i} \rightarrow R$ and $\iota_{j} \alpha_{i j}=\iota_{i}$. Take $a, b \in R$. Then $a=\iota_{i}\left(a_{i}\right), b=\iota_{j}\left(b_{j}\right)$ for some $i, j \in I$ and there is $k \in I$ such that $i \leq k, j \leq k$. Define

$$
a+b=\iota_{k}\left(\alpha_{i k}\left(a_{i}\right)+\alpha_{j k}\left(b_{j}\right)\right) \text { and } a b=\iota_{k}\left(\alpha_{i k}\left(a_{i}\right) \alpha_{j k}\left(b_{j}\right)\right),
$$

where $\alpha_{i k}\left(a_{i}\right)$ and $\alpha_{j k}\left(b_{j}\right)$ are in R_{k}. Then R forms a ring with $0=\iota_{i}(0)$ and $1=\iota_{i}(1)$. We have to show that R is a reversibly Armendariz ring.

Now let $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ be two polynomials such that $f(x) g(x)=0$. There is $k \in I$ such that $f(x), g(x) \in R_{k}[x]$
via ι_{i} 's and $\alpha_{i j}$'s; hence all a_{i} and b_{j} are in R_{k}. Since R_{k} is reversibly Armendariz, $b_{j} a_{i}=0$, entailing R being reversibly Armendariz.

The class of reversibly Armendariz rings is not closed under homomorphic images by the following example.

Example 2.7. Let R be the ring of quaternions with integer coefficients. Then R is a domain, so reversibly Armendariz. However for any odd prime integer q, the ring $R / q R$ is isomorphic to $\operatorname{Mat}_{2}\left(\mathbb{Z}_{q}\right)$ by the argument in [7, Exercise 2A]. Thus $R / q R$ is not reversible, hence $R / q R$ is not reversibly Armendariz when $q \in\{3,5,7,11, \ldots\}$.

Proposition 2.8. Let e be a central idempotent of a ring R and let M be a multiplicative monoid in R consisting of central regular elements. Then the following conditions are equivalent:
(1) R is reversibly Armendariz;
(2) $e R$ and $(1-e) R$ are both reversibly Armendariz; and
(3) $M^{-1} R$ is reversibly Armendariz.

Proof. (1) $\Rightarrow(2)$ is obvious since $e R$ and $(1-e) R$ are subrings of R.
$(2) \Rightarrow(1)$ is done by Proposition 2.6(1).
$(3) \Rightarrow(1)$ is obvious.
$(1) \Rightarrow(3)$: Let R be reversibly Armendariz and $S=M^{-1} R$. Put $f(x) g(x)=0$ where $f(x)=\sum_{i=0}^{m} \alpha_{i} x^{i}, g(x)=\sum_{j=0}^{n} \beta_{j} x^{j} \in S[x]$. We can assume that $\alpha_{i}=a_{i} u^{-1}, \beta_{j}=b_{j} v^{-1}$ with $a_{i}, b_{j} \in R$ for all i, j and $u, v \in M$. Then we have

$$
\begin{aligned}
0 & =f(x) g(x)=\sum_{i=0}^{m} \sum_{j=0}^{n} \alpha_{i} \beta_{j} x^{i+j}=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} u^{-1} v^{-1} x^{i+j} \\
& =\left(\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} x^{i+j}\right)(u v)^{-1}
\end{aligned}
$$

hence $\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i} b_{j} x^{i+j}=0$ in $R[x]$. Since R is reversibly Armendariz, $b_{j} a_{i}=0$ for all i, j and so $\beta_{j} \alpha_{i}=b_{j} v^{-1} a_{i} u^{-1}=b_{j} a_{i} v^{-1} u^{-1}=0$ for all i, j. Thus S is reversibly Armendariz.

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all formal sum $\sum_{i=k}^{n} r_{i} x^{i}$ with obvious addition and multiplication, where $r_{i} \in R$ and k, n are (possibly negative) integers. We denote this ring by $R\left[x ; x^{-1}\right]$.

Corollary 2.9. Given a ring R the following conditions are equivalent:
(1) R is reversibly Armendariz;
(2) $R[x]$ is reversibly Armendariz; and
(3) $R\left[x ; x^{-1}\right]$ is reversibly Armendariz.

Proof. $(1) \Rightarrow(2)$ comes from Proposition 1.1.
$(2) \Rightarrow(3)$ follows from Proposition 2.8, letting $M=\left\{1, x, x^{2}, \ldots\right\}$.
$(3) \Rightarrow(1)$ is obvious since R is a subring of $R\left[x, x^{-1}\right]$.
A ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_{1}, b_{1} \in R$ with b_{1} regular such that $a b_{1}=b a_{1}$. It is well-known that R is a right Ore ring if and only if the classical right quotient ring of R exists.

Proposition 2.10. Let R be a right Ore ring with the classical right quotient ring Q. Then R is reversibly Armendariz if and only if Q is reversibly Armendariz.

Proof. It is enough to show that if R is reversibly Armendariz then Q is reversibly Armendariz. Suppose that R is reversible and Armendariz. Then Q is reversible and Armendariz by [12, Theorem 2.6] and [9, Theorem 12], respectively.

It is well-known that a ring R is a semiprime right Goldie ring if and only if there exists the classical right quotient ring of R which is semisimple Artinian. Thus we obtain the following with the help of $[9$, Corollary 13].

Corollary 2.11. Suppose that a ring R is a semiprime right Goldie ring with the classical right quotient ring Q. Then the following conditions are equivalent:
(1) R is Armendariz;
(2) R is reversibly Armendariz;
(3) R is reversible;
(4) R is reduced;
(5) R is symmetric; and
(6) Q is a finite direct product of division rings.

The following provides a kind of reversibly Armendariz rings without identity.

Proposition 2.12. Any infinite direct sum of reversibly Armendariz rings is reversibly Armendariz.

Proof. Let $\left\{R_{i} \mid i \in I\right\}$ is the set of infinitely many reversibly Armendariz rings. Since the direct sum of R_{i} 's is a subring of the direct product of R_{i} 's. Thus the result comes from Proposition 2.6(1).

References

[1] D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272.
[2] D.D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847-2852.
[3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (8) (2008), 3128-3140.
[4] E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974) 470-473
[5] V. Camillo, C.Y. Hong, N.K. Kim, Y. Lee, P.P. Nielsen, Nilpotent ideals in polynomial and power series rings, Proc. Amer. Math. Soc. 138 (2010), 16071619.
[6] P. M. Cohn, Reversible rings, Bull. Lond. Math. Soc. 31 (1999), 641-648.
[7] K.R. Goodearl, R.B. Warfield, JR., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press (1989).
[8] C. Huh, H.K. Kim, N.K. Kim, Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), 154-167.
[9] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761.
[10] N.K. Kim, K.H. Lee, Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), 2205-2218.
[11] N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
[12] N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223.
[13] J. Krempa, D. Niewieczerzal, Rings in which annihilators are ideals and their application to semigroup rings, Bull. Acad. Polon. Sci. Ser. Sci., Math. Astronom, Phys. 25 (1977), 851-856.
[14] T.K. Kwak, Y. Lee, Reflexive property of rings, Comm. Algebra 40 (2012) 15761594.
[15] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.
[16] T.-K. Lee, T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), 583-593.
[17] Z.-K. Liu, G. Yang, On strongly reversible rings, Taiwanese J. Math. 12 (2008), 129-136.
[18] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311-318.
[19] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.

Department of Mathematics
Pusan Science High School
Pusan 609-735, Korea
E-mail: kjsccc@hanmail.net
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail: cilee@pusan.ac.kr
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail: ylee@pusan.ac.kr

[^0]: Received June 24, 2012. Revised July 26, 2012. Accepted July 30, 2012.
 2010 Mathematics Subject Classification: 16U80, 16S36, 16N40.
 Key words and phrases: reversibly Armendariz ring, polynomial ring, reversible ring, Armendariz ring, nilradical.

 * Corresponding author.

