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DETERMINANT AND SPECTRUM PRESERVING

MAPS ON Mn

Sang Og Kim

Abstract. Let Mn be the algebra of all complex n × n matrices
and ϕ : Mn → Mn a surjective map (not necessarily additive or
multiplicative) satisfying one of the following equations:

det(ϕ(A)ϕ(B) + ϕ(X)) = det(AB +X), A,B,X ∈ Mn,

σ(ϕ(A)ϕ(B) + ϕ(X)) = σ(AB +X), A,B,X ∈ Mn.

Then it is an automorphism, where σ(A) is the spectrum of A ∈
Mn. We also show that if A be a standard operator algebra, B is
a unital Banach algebra with trivial center and if ϕ : A → B is a
multiplicative surjection preserving spectrum, then ϕ is an algebra
isomorphism.

1. Introduction

The study of linear operators on algebras or vector spaces that leave
certain functions, subsets or relations invariant is now commonly re-
ferred to as the linear preserver problems. The first result on linear
preservers is due to Frobenius [4] who studied the linear maps on matrix
algebras preserving determinant. Let Mn be the algebra of all complex
n x n matrices. If A ∈ Mn, then At denote its transpose. Frobenius
proved that if ϕ : Mn → Mn is a bijective linear map satisfying detA =
detϕ(A), A ∈ Mn then either ϕ is of the form ϕ(A) = MAN,A ∈ Mn

or ϕ is of the form ϕ(A) = MAtN,A ∈ Mn, where M,N ∈ Mn are
nonsingular matrices with det(MN) = 1. Recently, additive preserver
problems are also active topics in the study of matrix algebras or infinite
dimensional operator algebras. These are problems similar to the linear
preserver problems but they consider only the addition of the algebras
or vector spaces. In this direction, only a few results concerning the
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preserver problem have been obtained (see, for example, [2, 5, 9, 10] and
the references therein). In [3] Dolinar and Šemrl showed the following
result holds true without the linearity or additivity of the map.
Theorem A [3, Theorem 1.1] Let ϕ : Mn → Mn be a surjective mapping
satisfying

det(A+ λB) = det(ϕ(A) + λϕ(B)), A,B ∈ Mn, λ ∈ C.
Then there exist M,N ∈ Mn with det(MN) = 1 such that either

ϕ(A) = MAN, A ∈ Mn,

or
ϕ(A) = MAtN, A ∈ Mn.

It is proved in [11] that Theorem A holds true without the surjectivity
condition.

Theorem A concerns with the determinant preserving maps with re-
spect to the vector space structure of the underlying algebra.

The purpose of this note is to consider the same problem as in Theo-
rem A with respect to the ring structure of the algebra. More precisely,
we will show that if ϕ : Mn → Mn is a surjective map satisfying

det(ϕ(A)ϕ(B) + ϕ(X)) = det(AB +X), A,B,X ∈ Mn,

or
σ(ϕ(A)ϕ(B) + ϕ(X)) = σ(AB +X), A,B,X ∈ Mn,

then it is an automorphism, where σ(A) is the spectrum of A ∈ Mn.
We also show that if A be a standard operator algebra, B is a unital
Banach algebra with trivial center and if ϕ : A → B is a multiplicative
surjection preserving spectrum, then ϕ is an algebra isomorphism.

2. Results

The following lemma plays a key role in the proof of Theorem 3, so
we list its proof for reader’s convenience.

Lemma 1. [3, Lemma 2.1] Let A,B ∈ Mn be matrices such that
det(A+X) = det(B +X) for every X ∈ Mn. Then A = B.

Proof. If we denote Y = A + X and C = B − A, then detY =
det(C + Y ) for every Y ∈ Mn. Denote rank C = r. Then there exists
Y0 of rank n − r such that C + Y0 is invertible. Hence detY0 ̸= 0, or
equivalently, r = 0. It follows that C = 0, as desired.
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For x, y in a Hilbert space H, x ⊗ y denote the rank one or zero
operator on H given by z 7→< z, y > x. The following lemma was
proved in [9, Lemma 2.4] for operators on Banach spaces. Here, we give
a short proof in case of Cn by using the idea of [6, Lemma 1] .

Lemma 2. Let A,B ∈ Mn. If σ(A + X) = σ(B + X) for every
X ∈ Mn, then A = B.

Proof. Let Y be any element of Mn and X = −B + Y . Then σ(A−
B + Y ) = σ(B − B + Y ) = σ(Y ). Assume that A − B ̸= 0, and x
be a vector of Cn such that (A − B)x = y ̸= 0. There is a vector z
such that < x, z >= 1 and < y, z > ̸= 0. If Y = (x − y) ⊗ z, then
(A−B + Y )x = x, so 1 ∈ σ(A−B + Y ). But σ(Y ) = {0, < x− y, z >}
and < x− y, z >= 1− < y, z > ̸= 1. Hence σ(A−B + Y ) ̸= σ(Y ). This
is a contradiction.

We consider Mn as a ring, that is, we consider the addition and mul-
tiplication simultaneously and consider the problem similar to that of
Theorem A.

Theorem 3. Let Mn be the algebra of all complex n × n matrices.
If ϕ : Mn → Mn is a surjective map satisfying

det(ϕ(A)ϕ(B) + ϕ(X)) = det(AB +X), A,B,X ∈ Mn,

then there is an invertible M ∈ Mn such that ϕ is of the form

ϕ(A) = MAM−1, A ∈ Mn.

Proof. We first show that ϕ(0) = 0. Noting that for every A,X ∈ Mn,

det(ϕ(A)ϕ(0) + ϕ(X)) = det(X) = det(ϕ(0)ϕ(A) + ϕ(X)),

we have by Lemma 1 that ϕ(0) commutes with every element of Mn.
Hence ϕ(0) = λI for some scalar λ. Then det(λϕ(A) + ϕ(X)) = detX.
So, by Lemma 1, λϕ(A) = λϕ(B) for every A,B ∈ Mn, from which it
follows that λ = 0 and ϕ(0) = 0 and hence

det(ϕ(A)) = detA, A ∈ Mn.

Similarly, we have that ϕ(I) = µI for some scalar µ. Since ϕ is
determinant preserving it follows that µn = 1. Since det(µϕ(A) +
ϕ(X)) = det(A + X) for every A,X ∈ Mn, if we take X = A, we
have det((µ+1)ϕ(A)) = det(2A) for every A ∈ Mn. Then (µ+1)n = 2n
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and we have |µ+ 1| = 2. Since |µ| = 1 and |µ+ 1| is the distance be-
tween µ and −1, it follows that µ = 1. This shows that ϕ(I) = I. From
this, it follows that

det(ϕ(A) + ϕ(X)) = det(A+X), A,X ∈ Mn

and hence

det(ϕ(A)ϕ(B) + ϕ(X)) = det(AB +X)

= det(ϕ(AB) + ϕ(X)), A,B,X ∈ Mn.

Then by Lemma 1, it follows that

ϕ(A)ϕ(B) = ϕ(AB), A,B ∈ Mn.

Next, we show that ϕ is injective. Suppose that ϕ(A) = ϕ(C) for some
A,C ∈ Mn. Then det(A+X) = det(ϕ(A)+ϕ(X)) = det(ϕ(C)+ϕ(X)) =
det(C +X) for every X. Then by Lemma 1, A = C and ϕ is injective.
Hence ϕ : Mn → Mn is a bijective multiplicative map. SinceMn is prime,
that is, AMnB = {0} for A,B ∈ Mn implies either A = 0 or B = 0, it is
additive by [8]. So, ϕ is a determinant preserving additive map. Then
by [11, Theorem 3], ϕ(A) = MAN, A ∈ Mn or ϕ(A) = MAtN, A ∈ Mn,
where M,N are nonsingular elements of Mn. Since ϕ(I) = I, there is
an invertible M such that ϕ(A) = MAM−1 or ϕ(A) = MAtM−1 for
A ∈ Mn. Assume, on the contrary, that ϕ(A) = MAtM−1 for A ∈ Mn.
Then

ϕ(AB) = ϕ(A)ϕ(B) = (MAtM−1)(MBtM−1) = M(BA)tM−1 = ϕ(BA)

for every A,B. From this, it follows that AB = BA for every A,B ∈ Mn.
This is a contradiction. Hence ϕ is an automorphism, completing the
proof.

Next, we consider maps about the spectrum as in Theorem 3. Here,
the spectrum is just the set of eigenvalues and we do not necessarily count
the eigenvalues according to multiplicity. Note that it was shown in [7,
Theorem 3] that if ϕ : Mn → Mn is a linear map which preserves the set
of eigenvalues counting multiplicities, then ϕ is either an automorphism
or an antiautomorphism.

Theorem 4. Let Mn be the algebra of all complex n × n matrices.
If ϕ : Mn → Mn is a surjective map satisfying

σ(ϕ(A)ϕ(B) + ϕ(X)) = σ(AB +X), A,B,X ∈ Mn,
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then there is an invertible M ∈ Mn such that ϕ : Mn → Mn is of the
form

ϕ(A) = MAM−1, A ∈ Mn.

Proof. The proof is very similar to that of Theorem 3. We first show
that ϕ(0) = 0. Noting that for every A,X ∈ Mn,

σ(ϕ(A)ϕ(0) + ϕ(X)) = σ(X) = σ(ϕ(0)ϕ(A) + ϕ(X)),

we have by Lemma 2 that ϕ(0) commutes with every element of Mn.
Hence ϕ(0) = λI for some scalar λ. Then σ(λϕ(A) + ϕ(X)) = σ(X).
So, by Lemma 2, λϕ(A) = λϕ(B) for every A,B ∈ Mn, from which it
follows that λ = 0 and hence ϕ(0) = 0. It also follows that

σ(ϕ(A)) = σ(A), A ∈ Mn.

Next, we show that ϕ(I) = I. Since σ(A+X) = σ(ϕ(A)ϕ(I) + ϕ(X)) =
σ(ϕ(I)ϕ(A) + ϕ(X)), ϕ(I) = µI for some scalar µ. Then σ(A + X) =
σ(µϕ(A) + ϕ(X)) for every A,X ∈ Mn, from which it follows that
σ(ϕ(A)) = σ(A) = σ(µϕ(A)) = µσ(ϕ(A)). Hence µ = 1 and ϕ(I) = I.
From this, it follows that for every A,X ∈ Mn

σ(A+X) = σ(ϕ(A) + ϕ(X))

and hence

σ(ϕ(AB) + ϕ(X)) = σ(AB +X) = σ(ϕ(A)ϕ(B) + ϕ(X)).

By Lemma 2, it follows that ϕ is multiplicative.
Next, we show that ϕ is injective. Suppose that ϕ(A) = ϕ(C) for some

A,C ∈ Mn. Then σ(A + X) = σ(ϕ(A) + ϕ(X)) = σ(ϕ(C) + ϕ(X)) =
σ(C +X) for every X. Then by Lemma 2, A = C and ϕ is injective.

Now, since Mn is prime, that is, AMnB = {0} for A,B ∈ Mn implies
either A = 0 or B = 0, it is additive by [8]. So, ϕ is a spectrum preserving
surjective additive map on Mn. Then by [9], it is either of the form
ϕ(A) = MAM−1 for a linear isomorphism M : Cn → Cn or of the form
ϕ(A) = MA∗M−1 for a linear isomorphism M : (Cn)∗ → Cn. Assume
on the contrary that ϕ(A) = MA∗M−1, A ∈ Mn. Then ϕ(AB) =
M(AB)∗M−1 = MB∗A∗M−1 = ϕ(BA). This is a contradiction since ϕ
is injective. This completes the proof.

Finally we consider spectrum preserving maps between Banach alge-
bras. For the linear case, in [1, Corollary 3.4] they showed that if A
is a semisimple Banach algebra, B is a primitive Banach algebra with
minimal ideals and ϕ : A → B is a surjective linear map preserving



290 Sang Og Kim

spectrum, then ϕ is either a homomorphism or an antihomomorphism.
Recall that a standard operator algebra on a Banach space X is a closed
subalgebra in B(X) which contains the identity I and the ideal of finite
rank operators.

Let X be a Banach space, x ∈ X and f ∈ X∗. We denote by x⊗f the
rank one or zero operator onX given by z 7→ (z, f)x. Note that standard
operator algebras and primitive Banach algebras with unit have trivial
centers, that is, scalar multiples of identity element of the algebras.

Theorem 5. Let A be a standard operator algebra on a Banach space
X and B be a unital Banach algebra with trivial center. If ϕ : A → B
is a multiplicative surjection preserving spectrum, then ϕ is an algebra
isomorphism.

Proof. First we show that ϕ is injective. Let ϕ(A) = ϕ(C) for A,C ∈
A. Then for every D ∈ A, we have

σ(AD) = σ(ϕ(A)ϕ(D)) = σ(ϕ(C)ϕ(D)) = σ(CD).

Taking D as the operator x⊗ f , we have

{0, (Ax, f)} = σ(AD) = σ(CD) = {0, (Cx, f)},
from which it follows that A = C. Hence ϕ is a bijective multiplicative
map. Since each standard algebra is prime, it is additive by [8]. Next,
we show that ϕ is linear. To do this, it suffices to show that it is homo-
geneous. Let A ∈ A and λ be a scalar. Since ϕ(λI) is a central element
of B, there is a scalar µ such that ϕ(λI) = µI. Since

{λ} = σ(λI) = σ(ϕ(λI)) = σ(µI) = {µ},
we have ϕ(λI) = λI. So, ϕ(λA) = ϕ(λI)ϕ(A) = λϕ(A). Hence ϕ is
homogeneous. This completes the proof.
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