SOME PROPERTIES OF GR-MULTIPLICATION MODULES

Seungkook Park

Abstract

In this paper, we provide the necessary and sufficient conditions for a faithful graded module to be a graded multiplication module and for a graded submodule of a faithful gr-multiplication to be gr-essential.

1. Introduction

Let R be a commutative ring with identity $1 \neq 0$ and M a unital R module. M is called a multiplication module provided for each submodule N of M, there exists an ideal I of R such that $N=I M$ [2]. Let G be a multiplicative group with identity e. A ring R is said to be a graded ring of type G if there is a family of additive subgroups of R, say $\left\{R_{i} \mid i \in G\right\}$, such that $R=\bigoplus_{i \in G} R_{i}$ and $R_{i} R_{j} \subseteq R_{i j}$ for all $i, j \in G$, where $R_{i} R_{j}$ is the set of all finite sums of products $r_{i} r_{j}$ with $r_{i} \in R_{i}$ and $r_{j} \in R_{j}$. The elements of $h(R)=\bigcup_{i \in G} R_{i}$ are called the homogeneous elements of R. Any nonzero $r \in R$ has a unique expression as a sum of homogeneous elements, that is, $r=\sum_{i \in G} r_{i}$ where r_{i} is nonzero for a finite number of i in G. The nonzero elements r_{i} in the decomposition of r are called the homogeneous components of r. Let R be a graded ring of type G then R-module M is said to be a graded R-module if there is a family $\left\{M_{i} \mid i \in G\right\}$ of additive subgroups of M such that $M=\bigoplus_{i \in G} M_{i}$ and $R_{i} M_{j} \subseteq M_{i j}$ for all $i, j \in G$. Elements of $h(M)=\bigcup_{i \in G} M_{i}$ are called the homogeneous elements of M. A submodule N of M is a graded submodule if $N=\bigoplus_{i \in G}\left(N \cap M_{i}\right)$, or equivalently, if for any $x \in N$, the homogeneous components of x are again in N. Properties

Received July 22, 2012. Revised August 22, 2012. Accepted September 5, 2012.
2010 Mathematics Subject Classification: 16W50, 13A02.
Key words and phrases: gr-multiplication module, multiplication module.
This Research was supported by the Sookmyung Women's University Research Grants 2012.
of multiplication module have been studied by many mathematicians [1], [2], [3], [5], [6], [7], [8], [9], [10]. In this paper, we generalize some of the properties of the multiplication modules to graded multiplication modules.

2. Gr-multiplication modules

In this Section we state the definition of the gr-multiplication module and introduce a basic theorem which will be a main tool used to provide proofs of the theorems in the following sections.

Definition 2.1. Let R be a graded ring and let M be a graded R module. Then M is called a gr-multiplication module if for any graded submodule N of M, there exists a graded ideal I of R such that $N=I M$.

For any graded submodule N of M, we denote $(N: M)_{g}$ the graded ideal of R generated by $(h(N): h(M))=\{r \in h(R) \mid r h(M) \subseteq h(N)\}$. Note that $(N: M)_{g}$ is the graded ideal of R generated by $(N: M) \cap h(R)$ and that $(N: M)_{g}=(N: M)$, where $(N: M)=\{r \in R \mid r M \subseteq N\}$. Note that if M is a graded R-module and N is a submodule of M, then $(N: M)$ is a graded ideal of $R[4]$.

Proposition 2.2. Let R be a graded ring and let M be a graded R-module. Then M is a gr-multiplication R-module if and only if for any graded submodule N of $M, N=(N: M)_{g} M$.

Proof. Suppose that M is a gr-multiplication module and let N be a graded submodule. Then $N=I M$ for some graded ideal I of R. Since $I \subseteq(N: M)=(N: M)_{g}, N=I M \subseteq(N: M)_{g} M \subseteq N$. Thus $N=(N: M)_{g} M$. The other direction of the proof is clear by taking $(N: M)_{g}=I$. This completes the proof.

Remark. If M is a graded module and a multiplication module, then M is a gr-multiplication module. However, a gr-multiplication module may not be a multiplication module. An example of a gr-multiplication module which is not a multiplication module is given in [4].

Proposition 2.3. Let R be a graded ring and let M be a graded R-module. Then M is a gr-multiplication module if and only if for each $m \in h(M)$, there exists a graded ideal I of R such that $R m=I M$.

Proof. Suppose that M is a gr-multiplication module. Let $m \in h(M)$. Since $R m \simeq R$ as an R-module, $R m$ is a graded submodule of M. Hence there exists a graded ideal I of R such that $R m=I M$.

Conversely, suppose that for each $m \in h(M)$, there exists a graded ideal I of R such that $R m=I M$. Let N be a submodule of M. For each $x \in h(N)$ there exists a graded ideal I_{x} such that $R x=I_{x} M$. Let $I=\sum_{x \in h(N)} I_{x}$. Then $N=I M$. Therefore M is a gr-multiplication module.

Let M be a graded R-module. If P is a gr-maximal ideal of R, then we define $T_{P}(h(M))=\{m \in h(M) \mid(1-p) m=0$ for some $p \in P\}$.

Lemma 2.4. Let M be a gr-multiplication R-module and let P be a gr-maximal ideal of R. Then $M=P M$ if and only if $h(M)=T_{P}(h(M))$.

Proof. Suppose that $M=P M$. Let $m \in h(M)$. Then $R m=I M$ for some graded ideal I of R. Hence $R m=I M=I P M=P I M=P m$ and $m=p m$ for some $p \in P$. Thus $(1-p) m=0$ and $m \in T_{P}(h(M))$. If follows that $h(M)=T_{P}(h(M))$.

Conversely, suppose $h(M)=T_{P}(h(M))$. Let $m \in M$. Then $m=$ $m_{\sigma_{1}}+\cdots+m_{\sigma_{n}}$ for some $m_{\sigma_{i}} \in M_{\sigma_{i}}$. Since $h(M)=T_{P}(h(M)), m_{\sigma_{i}} \in$ $T_{P}(h(M))$ and hence $m=p_{\sigma_{1}} m_{\sigma_{1}}+\cdots+p_{\sigma_{n}} m_{\sigma_{n}}$ for some $p_{\sigma_{i}} \in P$. Thus $m \in P M$. It follows that $M=P M$.

The following theorem can be found in [4]. For our purpose we modify the statement and provide the proof of the theorem for completeness of the paper.

Theorem 2.5. Let R be a graded ring. Then a graded R-module M is a gr-multiplication module if and only if for every gr-maximal ideal P of R either $h(M)=T_{P}(h(M))$ or there exist $p \in P$ and $m \in h(M)$ such that $(1-p) M \subseteq R m$.

Proof. Let M be a gr-multiplication module and let P be a gr-maximal ideal of R. Suppose $M=P M$. Then $h(M)=T_{P}(h(M))$ by Lemma 2.4. Now suppose $M \neq P M$. Let $m \in h(M)$ with $m \notin P M$. Then there exists a graded ideal I of R such that $R m=I M$. If $I \subseteq P$ then $R m=I M \subseteq P M$ which gives a contradiction that $m \in P M$. Therefore $I \nsubseteq P$. Since $R=P+I, 1=p+i$ for some $p \in P$ and $i \in I$. Hence $1-p \in I$. Thus $(1-p) M \subseteq I M=R m$.

Conversely, let N be a graded submodule of M and let $I=(N: M)_{g}$. Then $I M \subseteq N$. Let $n \in h(N)$ and let $K=\{r \in R \mid r n \in I M\}$
be a graded ideal of R. Suppose $K \neq R$. Then there exists a grmaximal ideal P of R such that $K \subseteq P$. If $h(M)=T_{P}(h(M))$, then $(1-p) n=0$ for some $p \in P$. Hence $1-p \in K \subseteq P$ which implies $1 \in P$. This is a contradiction. Thus by hypothesis, there exist $q \in P$ and $m \in h(M)$ such that $(1-q) M \subseteq R m$. It follows that $(1-q) N$ is a graded submodule of $R m$ and hence $(1-q) N=J R m=J m$ where $J=\{r \in R \mid r m \in(1-q) N\}$ is a graded ideal of R. Note that $(1-q) J M=J(1-q) M \subseteq J m \subseteq N$ and hence $(1-q) J \subseteq I$. It follows that $(1-q)^{2} n \in(1-q)^{2} N=(1-q) J m \subseteq I M$. But this gives the contradiction $(1-q)^{2} \in K \subseteq P$. Thus $K=R$ and $n \in I M$. Hence $h(N) \subseteq I M$. It follows that $N=I M$ and hence M is a gr-multiplication module.

Corollary 2.6. Let M be a graded R-module such that $M=$ $\sum_{\lambda \in \Lambda} R m_{\lambda}$ for some elements $m_{\lambda} \in h(M)(\lambda \in \Lambda)$. Then M is a grmultiplication module if and only if there exist graded ideals I_{λ} of R such that $R m_{\lambda}=I_{\lambda} M$ for all $\lambda \in \Lambda$.

Proof. The necessity is clear.
Conversely, suppose that there exist graded ideals I_{λ} of R such that $R m_{\lambda}=I_{\lambda} M$ for all $\lambda \in \Lambda$. Let P be a gr-maximal ideal of R. Suppose $I_{\mu} \nsubseteq P$ for some $\mu \in \Lambda$. Then there exist $p \in P$ such that $1-p \in I_{\mu}$. Thus $(1-p) M \subseteq I_{\mu} M=R m_{\mu}$. Now suppose that $I_{\lambda} \subseteq P$ for all $\lambda \in \Lambda$. Then $R m_{\lambda} \subseteq P M$ for all $\lambda \in \Lambda$ and hence $M=P M$. But for any $\lambda \in \Lambda$, this implies $R m_{\lambda}=I_{\lambda} M=I_{\lambda} P M=P I_{\lambda} M=P R m_{\lambda}=P m_{\lambda}$ and hence $m_{\lambda} \in T_{P}(h(M))$. It follows that $h(M)=T_{P}(h(M))$. By the Theorem 2.5, M is a gr-multiplication module.

3. Main Results

Definition 3.1. An R-module M is faithful if, whenever $r \in R$ is such that $r M=0$, then $r=0$.

The next proposition gives the conditions for a faithful graded module to be gr-multiplication module.

Theorem 3.2. Let R be a graded ring and let M be a faithful graded R-module. Then M is a gr-multiplication module if and only if
(i) $\cap_{\lambda \in \Lambda}\left(I_{\lambda} M\right)=\left(\cap_{\lambda \in \Lambda} I_{\lambda}\right) M$ for any non-empty collection of graded ideals $I_{\lambda}(\lambda \in \Lambda)$ of R, and
(ii) for any graded submodule N of M and graded ideal A of R such that $N \varsubsetneqq A M$ there exists an ideal B with $B \varsubsetneqq A$ and $N \subseteq B M$.

Proof. Suppose M is a gr-multiplication module. Let $I_{\lambda}(\lambda \in \Lambda)$ be a non-empty collection of graded ideals of R. Let $I=\cap_{\lambda \in \Lambda} I_{\lambda}$. Then $I M \subseteq \cap_{\lambda \in \Lambda}\left(I_{\lambda} M\right)$. Let $x \in h\left(\cap_{\lambda \in \Lambda}\left(I_{\lambda} M\right)\right)$ and let $K=\{r \in R \mid r x \in$ $I M\}$ be a graded ideal of R. Suppose $K \neq R$. Then there exists a gr-maximal ideal P of R such that $K \subseteq P$. Then $x \notin T_{P}(h(M))$ and hence there exist $p \in P$ and $m \in h(M)$ such that $(1-p) M \subseteq R_{m}$. Then $(1-p) x \in(1-p) I_{\lambda} M=I_{\lambda}(1-p) M \subseteq I_{\lambda} m$ for all $\lambda \in \Lambda$. Thus $(1-p) x \in \cap_{\lambda \in \Lambda}\left(I_{\lambda} m\right)$. For each $\lambda \in \Lambda$, there exists $a_{\lambda} \in I_{\lambda}$ such that $(1-p) x=a_{\lambda} m$. Choose $\alpha \in \Lambda$. For each $\lambda \in \Lambda, a_{\alpha} m=a_{\lambda} m$ so that $\left(a_{\alpha}-a_{\lambda}\right) m=0$. Now $(1-p)\left(a_{\alpha}-a_{\lambda}\right) M=\left(a_{\alpha}-a_{\lambda}\right)(1-$ p) $M \subseteq\left(a_{\alpha}-a_{\lambda}\right) R_{m}=0$ implies $(1-p)\left(a_{\alpha}-a_{\lambda}\right)=0$. Therefore $(1-p) a_{\alpha}=(1-p) a_{\lambda} \in I_{\lambda}(\lambda \in \Lambda)$ and hence $(1-p) a_{\alpha} \in I$. Thus $(1-p)^{2} x=(1-p) a_{\alpha} m \in I M$. It follows that $(1-p)^{2} \in K \subseteq P$, which is a contradiction. Thus $K=R$ and $x \in I M$. Hence $h\left(\cap_{\lambda \in \Lambda}\left(I_{\lambda} M\right)\right) \subseteq I M$. This shows that $\cap_{\lambda \in \Lambda}\left(I_{\lambda} M\right) \subseteq I M$ and (i) is proved. Now let N be a graded submodule of M and A a graded ideal of R such that $N \nsubseteq A M$. There exists a graded ideal C of R such that $N=C M$. Let $B=A \cap C$. Clear $B \varsubsetneqq A$ and $N=A M \cap C M=(A \cap C) M=B M$ by (i). This proves (ii).

Conversely, suppose that (i) and (ii) hold. Let N be a graded submodule of M. Let $S=\{I \mid I$ is a graded ideal of R and $N \subseteq I M\}$. Clearly $R \in S$. Let $I_{\lambda}(\lambda \in \Lambda)$ be any non-empty collection of graded ideals in S. By (i), $\cap_{\lambda \in \Lambda} I_{\lambda} \in S$. By Zorn's Lemma, S has a minimal member, say A. Then $N \subseteq A M$. Suppose that $N \neq A M$. By (ii), there exists a graded ideal B of R with $B \nsubseteq A$ and $N \subseteq B M$. In this case $B \in S$, contradicting the choice of A. Thus $N=A M$. If follows that M is a gr-multiplication module.

A graded R-module M is called finitely gr-cogenerated provided for every non-empty collection of graded submodules $N_{\lambda}(\lambda \in \Lambda)$ of M with $\cap_{\lambda \in \Lambda} N_{\lambda}=0$ there exists a finite subset Λ^{\prime} of Λ such that $\cap_{\lambda \in \Lambda^{\prime}} N_{\lambda}=0$. The graded ring R is called finitely gr-cogenerated provided it is finitely gr-cogenerated as an R-module.

Corollary 3.3. Let M be a faithful gr-multiplication R-module. Then M is finitely gr-cogenerated if and only if R is finitely gr-cogenerated.

Proof. Suppose that M is a finitely gr-cogenerated. Let $I_{\lambda}(\lambda \in \Lambda)$ be a non-empty collection of graded ideals of R such that $\cap_{\lambda \in \Lambda} I_{\lambda}=0$. Then $\cap_{\lambda \in \Lambda}\left(I_{\lambda} M\right)=0$ by Theorem 3.2. Since M is finitely gr-cogenerated, it follows that there exists a finite subset Λ^{\prime} of Λ such that $\cap_{\lambda \in \Lambda^{\prime}}\left(I_{\lambda} M\right)=0$. Thus $\left(\cap_{\lambda \in \Lambda^{\prime}} I_{\lambda}\right) M=0$ and, because M is faithful, $\cap_{\lambda \in \Lambda^{\prime}} I_{\lambda}=0$. It follows that R is finitely gr-cogenerated.

Conversely, let $N_{\gamma}(\gamma \in \Gamma)$ be a non-empty collection of graded submodules of M such that $\cap_{\gamma \in \Gamma} N_{\gamma}=0$. For each $\gamma \in \Gamma$, there exists a graded ideal I_{γ} of R such that $N_{\gamma}=I_{\gamma} M$. Then $0=\cap_{\gamma \in \Gamma} N_{\gamma}=$ $\cap_{\gamma \in \Gamma}\left(I_{\gamma} M\right)=\left(\cap_{\gamma \in \Gamma} I_{\gamma}\right) M$. Thus $\cap_{\gamma \in \Gamma} I_{\gamma}=0$ and by hypothesis, there exists a finite subset Γ^{\prime} of Γ such that $\cap_{\gamma \in \Gamma^{\prime}} I_{\gamma}=0$. By Theorem 3.2, $\cap_{\gamma \in \Gamma^{\prime}} N_{\gamma}=\cap_{\gamma \in \Gamma^{\prime}}\left(I_{\gamma} M\right)=\left(\cap_{\gamma \in \Gamma} I_{\gamma}\right) M=0$. Hence M is finitely grcogenerated.

A graded ideal P of R (i.e., a graded R-submodule of R) is called gr-prime if $P \neq R$ and whenever $r s \in P(r, s \in h(R))$ then $r \in P$ or $s \in P$.

Proposition 3.4. Let P be a gr-prime ideal of R and M a faithful grmultiplication R-module. Let $a \in h(R)$ and $x \in h(M)$ satisfy $a x \in P M$. Then $a \in P$ or $x \in P M$.

Proof. Suppose $a \notin P$. Let $K=\{r \in R \mid r x \in P M\}$. Suppose $K \neq R$. Then there exists a gr-maximal ideal Q of R such that $K \subseteq Q$. Clearly $x \notin T_{Q}(h(M))$. By Theorem 2.5, there exist $q \in Q$ and $m \in$ $h(M)$ such that $(1-q) M \subseteq R m$. In particular, $(1-q) x=s m$ for some $s \in R$ and $(1-q) a x=p m$ for some $p \in P$. Thus $(a s-p) m=0$. Now $[(1-q) \operatorname{ann}(m)] M=0$ implies $(1-q) \operatorname{ann}(m)=0$, because M is faithful, and hence $(1-q)(a s-p)=0$. Then $(1-q)$ as $=(1-q) p \in P$. But $P \subseteq K \subseteq Q$ so that $(1-q) \notin P$. Thus $s \in P$ and $(1-q) x=s m \in P M$. Thus $1-q \in K \subseteq Q$, which is a contradiction. It follows that $K=R$ and $x \in P M$, as required.

Definition 3.5. A graded submodule N of a graded R-module M is called gr-essential provided $N \cap K \neq 0$ for every nonzero graded submodule K of M. A gr-essential ideal of R is just a gr-essential submodule of the graded R-module R.

Theorem 3.6. Let R be a graded ring and M a faithful gr-multiplication R-module. A graded submodule N of M is gr-essential if and only if there exists a gr-essential ideal E of R such that $N=E M$.

Proof. Suppose that N is a gr-essential submodule of M. There exists a graded ideal A of R such that $N=A M$. Suppose $A \cap B=0$ for some graded ideal B of R. By Theorem 3.2, we have $N \cap(B M)=$ $(A M) \cap(B M)=(A \cap B) M=0$, and hence $B M=0$. Since M is faithful, $B=0$. Hence A is a gr-essential ideal of R.

Conversely, suppose that E is gr-essential ideal of R. Let K be a graded submodule of M such that $(E M) \cap K=0$. There exists a graded ideal C of R with $K=C M$ and hence $(E \cap C) M=(E M) \cap K=0$. Since M is faithful, it follows that $E \cap C=0$ and hence $C=0$. Therefore $K=0$ and thus $E M$ is a gr-essential submodule of M.

References

[1] M.M. Ali and D.J. Smith, Some remarks on multiplication and projective modules, Comm. Algebra 32 (10) (2004), 3897-3909.
[2] A. Barnard, Multiplication modules, J. Algebra 71 (1) (1981), 174-178.
[3] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16(4) (1988), 755-779.
[4] J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. Algebra 26 (6) (1998), 1867-1883.
[5] S.C. Lee, S. Kim, and S. Chung, Ideals and submodules of multiplication modules, J. Korean Math. Soc. 42 (5) (2005), 933-948.
[6] G.M. Low and P.F. Smith, Multiplication modules and ideals, Comm. Algebra 18 (12) (1990), 4353-4375.
[7] A.G. Naoum, Flat modules and multiplication modules, Period. Math. Hungar. 21 (4) (1990), 309-317.
[8] Y.S. Park and C.W. Choi, Multiplication modules and characteristic submodules, Bull. Korean Math. Soc. 32 (2) (1995), 321-328.
[9] Ünsal Tekir, A note on multiplication modules, Int. J. Pure Appl. Math. 27 (1) (2006), 107-111.
[10] A.A. Tuganbaev, Flat and multiplication modules, J. Math. Sci. (N. Y.) 128 (3) (2005), 2998-3004.

Department of Mathematics
Sookmyung Women's University
Seoul 140-742, Korea
E-mail: skpark@sookmyung.ac.kr

