A NOTE ON FOUR TYPES OF REGULAR RELATIONS

H. S. Song

ABSTRACT. In this paper, we study the four different types of relations, $\mathcal{P}(X,T)$, $\mathcal{R}(X,T)$, $\mathcal{L}(X,T)$, and $\mathcal{S}(X,T)$ in a transformation (X,T), and obtain some of their properties. In particular, we give a relationship between $\mathcal{R}(X,T)$ and $\mathcal{S}(X,T)$.

1. Introduction

The proximal relation were first studied by Ellis and Gottschalk in [6]. The syndetically proximal relation were introduced by Clay in [3]. In [1], Auslander defined the regular minimal sets which may be described as minimal subsets of enveloping semigroups. In [8], Shoenfeld introduced the regular homomorphisms which are defined by extending regular minimal sets to homomorphisms with minimal range. Also Yu introduced the regular relation and the syndetically regular relation (see [9], [10]).

In this paper, we study the four different types of relations in a transformation and give some of their properties.

2. Preliminaries

A transformation group (X, T) will consist of a jointly continuous action of the topological group T on the compact Hausdorff space X. The group T, with identity e, is assumed to be topologically discrete and remain fixed throughout this paper, so we may write X instead of (X, T).

Received March 17, 2012. Revised June 2, 2012. Accepted June 5, 2012.

²⁰¹⁰ Mathematics Subject Classification: 37B05.

Key words and phrases: proximal relation, regular relation, syndetically proximal relation, syndetically regular relation.

The present research has been conducted by the Research Grant of Kwangwoon University in 2011.

A flow is said to be *minimal* if every point has dense orbit. Minimal flows are also referred to as minimal sets.

A homomorphism of transformation groups is a continuous, equivariant map. A one-one homomorphism of X onto X is called an automorphism of X. We denote the group of automorphisms of X by A(X).

The compact Hausdorff space X carries a natural uniformity whose indices are the neighborhoods of the diagonal in $X \times X$. Two points $x, x' \in X$ are said to be *proximal* if, given any index α , there exists $t \in T$ such that $(xt, x't) \in \alpha$. The proximal relation in X, denoted by $\mathcal{P}(X,T)$, is the set of all proximal pairs in X. X is said to be *distal* if $\mathcal{P}(X,T) = \Delta_X$, the diagonal of $X \times X$ and is said to be *proximal* if $\mathcal{P}(X,T) = X \times X$.

Given a transformation group (X, T), we may regard T as a set of self-homeomorphisms of X. We define E(X), the *enveloping semigroup* of X to be the closure of T in X^X , taken with the product topology. E(X) is at once a transformation group and a sub-semigroup of X^X . The minimal right ideals of E(X), considered as a semigroup, coincide with the minimal sets of E(X). A subset A of T is said to be *syndetic* if there exists a compact subset K of T with T = AK.

Two points $x, x' \in X$ are said to be syndetically proximal if, given any index α , there exists a syndetic subset A of T such that $(xt, x't) \in \alpha$ for all $t \in A$. The set of syndetically proximal pairs in X is called the syndetically proximal relation and is denoted by $\mathcal{L}(X, T)$.

Two points $x, x' \in X$ are said to be *regular* if there exists $h \in A(X)$ such that $(h(x), x') \in \mathcal{P}(X, T)$. The set of regular pairs in X is called the *regular relation* and is denoted by $\mathcal{R}(X, T)$.

Two points $x, x' \in X$ are said to be syndetically regular if there exists $h \in A(X)$ such that $(h(x), x') \in \mathcal{L}(X, T)$. The set of syndetically regular pairs in X is called the syndetically regular relation and is denoted by $\mathcal{S}(X,T)$.

X is said to be *almost periodic* if, given any index α , there exists a syndetic subset A of T such that $xA \subset x\alpha$ for all $x \in X$, where $x\alpha = \{y \in X \mid (x, y) \in \alpha\}$. X is said to be *locally almost periodic* if, given $x \in X$ and U a neighborhood of x, there exists a neighborhood V of x and a syndetic subset A of T with $VA \subset U$.

REMARK 2.1. If E(X) contains just one minimal right ideal, then $\mathcal{P}(X,T)$ and $\mathcal{R}(X,T)$ are invariant equivalence relations on X (see [4], [9]).

LEMMA 2.2. ([2]) Suppose (X, T) is locally almost periodic. Then $\mathcal{P}(X, T) = \mathcal{L}(X, T)$.

LEMMA 2.3. ([4])(X,T) is almost periodic iff it is locally almost periodic and distal.

3. Some results on $\mathcal{P}(X,T)$, $\mathcal{R}(X,T)$, $\mathcal{L}(X,T)$ and $\mathcal{S}(X,T)$

The following lemma is an immediate consequence of the definitions.

LEMMA 3.1. Given a transformation group (X, T), the following statements are true :

(1) $\mathcal{L}(X,T) \subset \mathcal{P}(X,T) \subset \mathcal{R}(X,T).$ (2) $\mathcal{L}(X,T) \subset \mathcal{S}(X,T) \subset \mathcal{R}(X,T).$ (3) $\Delta_X \subset \mathcal{L}(X,T).$

(4) If $\mathcal{P}(X,T) = \mathcal{L}(X,T)$, then $\mathcal{R}(X,T) = \mathcal{S}(X,T)$.

The next lemma leads to a useful characterization of $\mathcal{L}(X,T)$.

LEMMA 3.2. ([5]) Given a transformation group (X, T), the following statements are true :

(1) $\mathcal{L}(X,T) = \{(x,y) \in X \times X \mid \overline{(x,y)T} \subset \mathcal{P}(X,T)\}.$

(2) $\mathcal{L}(X,T)$ is an invariant equivalence relation on X.

LEMMA 3.3. Given a transformation group (X, T), the following statements are true :

- (1) $\mathcal{S}(X,T) = \{(x,y) \in X \times X \mid (x,y)T \subset \mathcal{R}(X,T)\}.$
- (2) If E(X) contains just one minimal right ideal, then $\mathcal{S}(X,T)$ is an invariant equivalence relation on X.

Proof. (1) Use lemma 3.2(1). Assume that $(x, y) \in X \times X$. Then $(x, y) \in \mathcal{S}(X, T)$ iff there exists $h \in A(X)$ such that $(h(x), y) \in \mathcal{L}(X, T)$ iff there exists $h \in A(X)$ such that $\overline{(h(x), y)T} \subset \mathcal{P}(X, T)$ iff there exists $h \in A(X)$ such that $(h(xp), yp) \in \mathcal{P}(X, T)$ for all $p \in E(X)$ iff $(x, y)p \in \mathcal{R}(X, T)$ for all $p \in E(X)$ iff $\overline{(x, y)T} \subset \mathcal{R}(X, T)$. This completes the proof of (1).

(2) It follows immediately from (1) that $\mathcal{S}(X,T)$ is a reflexive, symmetric and invariant relation. To see that $\mathcal{S}(X,T)$ is transitive, assume that $(x,y) \in \mathcal{S}(X,T)$ and $(y,z) \in \mathcal{S}(X,T)$. Then $\overline{(x,y)T} \subset \mathcal{R}(X,T)$ and $\overline{(y,z)T} \subset \mathcal{R}(X,T)$ and hence $(xp,yp) \in \mathcal{R}(X,T)$ and $(yp,zp) \in \mathcal{R}(X,T)$.

 $\mathcal{R}(X,T)$ for all $p \in E(X)$. Since E(X) contains just one minimal right ideal, we have from Remark 2.1 that $(xp,zp) \in \mathcal{R}(X,T)$ for all $p \in E(X)$. Therefore $\overline{(x,z)T} \subset \mathcal{R}(X,T)$ and hence $(x,z) \in \mathcal{S}(X,T)$. \Box

REMARK 3.4. $\mathcal{P}(X,T)$, $\mathcal{R}(X,T)$, and $\mathcal{S}(X,T)$ are not equivalence relations on X. However, if E(X) contains just one minimal right ideal, then they are invariant equivalence relations on X (see Remark 2.1 and Lemma 3.3).

LEMMA 3.5. If $\mathcal{P}(X,T)$ is closed, then $\mathcal{R}(X,T)$ is also closed.

Proof. Let $(x, y) \in \mathcal{R}(X, T)$ and let $q \in E(X)$. Then there exists $h \in A(X)$ such that $(h(x), y) \in \mathcal{P}(X, T)$. Since $\mathcal{P}(X, T)$ is closed, we have that $(h(x), y)q \in \mathcal{P}(X, T)$ and therefore $(h(xq), yq) \in \mathcal{P}(X, T)$. This implies that $(xq, yq) \in \mathcal{R}(X, T)$. Thus $\mathcal{R}(X, T)$ is closed. \Box

THEOREM 3.6. Let $\mathcal{P}(X,T)$ be closed. Then

(1) $\mathcal{P}(X,T) = \mathcal{L}(X,T)$

(2) $\mathcal{R}(X,T) = \mathcal{S}(X,T).$

Proof. To see that (1) holds, assume that $(x, y) \in \mathcal{P}(X, T)$. Since $\mathcal{P}(X, T)$ is closed, it follows that $\overline{(x, y)T} \subset \mathcal{P}(X, T)$. By Lemma 3.2(1), it follows that $\mathcal{P}(X, T) \subset \mathcal{L}(X, T)$ and therefore $\mathcal{P}(X, T) = \mathcal{L}(X, T)$.

The proof of (2) is exactly analogous to that of (1) by Lemma 3.5. \Box

Ellis' result [4, Lemma 5.17] is a corollary to the above theorem.

COROLLARY 3.7. Let $\mathcal{P}(X,T)$ be closed. Then it is an invariant equivalence relation on X.

REMARK 3.8. Let (X,T) is distal. Since $\mathcal{P}(X,T) = \Delta_X$, it follows that $\mathcal{L}(X,T) = \mathcal{P}(X,T)$ and therefore $\mathcal{P}(X,T)$ is a closed invariant equivalence relation on X (see [4, Lemma 5.12]).

We can prove Ellis' result [4, Lemma 5.27] as follows :

THEOREM 3.9. Suppose (X, T) is locally almost periodic. Then the following statements are true :

(1) $\mathcal{L}(X,T) = \mathcal{P}(X,T) \subset \mathcal{R}(X,T) = \mathcal{S}(X,T).$

(2) $\mathcal{P}(X,T)$ and $\mathcal{R}(X,T)$ are closed invariant equivalence relations on X.

Proof. (1) This follows from Lemma 2.2 and Lemma 3.1(4).

(2)] The fact that $\mathcal{P}(X,T)$ is an invariant equivalence relation on X follows from (1) and Lemma 3.2(2). Since $\mathcal{P}(X,T)$ is transitive, it follows from [4, Proposition 5.16] that E(X) contains just one minimal right ideal and therefore $\mathcal{R}(X,T)$ is an invariant equivalence relation on X by Remark 2.1. The closed property of $\mathcal{P}(X,T)$ follows from [4, Proposition 5.26]. The closed property of $\mathcal{R}(X,T)$ follows from Lemma 3.5.

The proof of the following corollary follows immediately from Lemma 2.3.

COROLLARY 3.10. Suppose (X, T) is almost periodic. Then the following statements are true :

- (1) $\mathcal{L}(X,T) = \mathcal{P}(X,T) \subset \mathcal{R}(X,T) = \mathcal{S}(X,T).$
- (2) $\mathcal{P}(X,T)$ and $\mathcal{R}(X,T)$ are closed invariant equivalence relations on X.

THEOREM 3.11. Suppose $A(X) = \{1_X\}$, where $\{1_X\}$ is the identity homomorphism of X. Then $\mathcal{L}(X,T) = \mathcal{S}(X,T) \subset \mathcal{P}(X,T) = \mathcal{R}(X,T)$.

Proof. Let $(x, y) \in \mathcal{S}(X, T)$. Then $\overline{(x, y)T} \subset \mathcal{R}(X, T)$ by Lemma 3.3(1). Since $A(X) = \{1_X\}$, it follows that $\mathcal{P}(X, T) = \mathcal{R}(X, T)$ and hence $(x, y) \in \mathcal{L}(X, T)$ by Lemma 3.2(1). Therefore $\mathcal{S}(X, T) = \mathcal{L}(X, T)$.

COROLLARY 3.12. Suppose (X, T) is minimal and proximal. Then $\mathcal{L}(X, T) = \mathcal{S}(X, T) \subset \mathcal{P}(X, T) = \mathcal{R}(X, T).$

Proof. The proof uses [7, (8) of Section 1] to show that if (X,T) is minimal and proximal, then the only homomorphism $(X,T) \to (X,T)$ is the identity.

LEMMA 3.13. Let $h \in A(X)$ and let $h : X \times X \to X \times X$ be the map induced by h. Then the following statements are true :

(1) $\tilde{h}\mathcal{P}(X,T) \subset \mathcal{P}(X,T).$ (2) $\tilde{h}\mathcal{R}(X,T) \subset \mathcal{R}(X,T).$ (3) $\tilde{h}\mathcal{L}(X,T) \subset \mathcal{L}(X,T).$ (4) $\tilde{h}\mathcal{S}(X,T) \subset \mathcal{S}(X,T).$

Proof. The proof of (1) is analogous to that of [4, Proposition 5.22]. Let $(x, y) \in \mathcal{R}(X, T)$. Then there exists $\psi \in A(X)$ with $(\psi(x), y) \in$

 $\mathcal{P}(X,T). \quad \text{By (1)} \quad (h \circ \psi(x), h(y)) = (h \circ \psi \circ h^{-1} \circ h(x), h(y)) \in \mathcal{P}(X,T).$ Since $h \circ \psi \circ h^{-1} \in A(X)$, it follows that $(h(x), h(y)) = \check{h}(x,y) \in \mathcal{R}(X,T).$ Now let $(x,y) \in \mathcal{L}(X,T).$ Then $\overline{(x,y)T} \subset \mathcal{P}(X,T)$ by Lemma 3.2(1), which means that $(x,y)p \in \mathcal{P}(X,T)$ for all $p \in E(X).$ By (1) $\check{h}(x,y)p \in \mathcal{P}(X,T)$ for all $p \in E(X).$ Therefore $\overline{(h(x), h(y))T} \subset \mathcal{P}(X,T)$ and hence $(h(x), h(y)) \in \mathcal{L}(X,T).$ This proves that $\check{h}\mathcal{L}(X,T) \subset \mathcal{L}(X,T).$ The proof of (4) is analogous to that of (3). \Box

THEOREM 3.14. Let $h \in A(X)$ and let $h : X \times X \to X \times X$ be the map induced by h. Then the following statements are true :

(1) If (X,T) is minimal, then $h\mathcal{P}(X,T) = \mathcal{P}(X,T)$.

(2) If (X, T) is minimal and A(X) is abelian, then $h\mathcal{R}(X, T) = \mathcal{R}(X, T)$.

Proof. If (X, T) is minimal, then it is pointwise almost periodic. Thus (1) follows from [4, Proposition 5.22]. To see (2), let $(y_1, y_2) \in \mathcal{R}(X, T)$. Then there exists $\psi \in A(X)$ with $(\psi(y_1), y_2) \in \mathcal{P}(X, T)$. By (1) there exists $(x_1, x_2) \in \mathcal{P}(X, T)$ such that $\check{h}(x_1, x_2) = (\psi(y_1), y_2)$. Therefore we have that $(\psi^{-1}(h(x_1)), h(x_2)) = (y_1, y_2)$ and $\psi^{-1} \in A(X)$. Since A(X) is abelian, it follows that $(h(\psi^{-1}(x_1)), h(x_2)) = \check{h}(\psi^{-1}(x_1), x_2) = (y_1, y_2)$, which proves that $\check{h}\mathcal{R}(X, T) = \mathcal{R}(X, T)$.

For each $h \in A(X)$, we define the subsets $S_h(X)$ and $R_h(X)$ of $X \times X$ as follows:

$$S_h(X) = \{(x, x') \in X \times X \mid (h(x), x') \in \mathcal{L}(X, T)\}$$

 $R_h(X) = \{(x, x') \in X \times X \mid (h(x), x') \in \mathcal{P}(X, T)\}.$

Note that $S_{1_X}(X) = \mathcal{L}(X,T)$ and $R_{1_X}(X) = \mathcal{P}(X,T)$.

If \mathcal{V} and \mathcal{H} are relations in X, then $\mathcal{V} \circ \mathcal{H}$ is the relation in X defined by as follows :

 $(x,y) \in \mathcal{V} \circ \mathcal{H}$ if and only if for some element $z, (x,z) \in \mathcal{H}$ and $(z,y) \in \mathcal{V}$.

LEMMA 3.15. Let (X, T) be a transformation group and let $h \in A(X)$. Then $S_h(X) \neq \emptyset$ and $R_h(X) \neq \emptyset$.

Proof. Let $h, k \in A(X)$ and let x' = h(x). Then $(h(x), x') \in \Delta_X \subset \mathcal{L}(X,T) \subset \mathcal{P}(X,T)$ by Lemma 3.1. Therefore $(x,x') \in S_h(X)$ and $(x,x') \in R_h(X)$. This proves that $S_h(X) \neq \emptyset$ and $R_h(X) \neq \emptyset$. \Box

THEOREM 3.16. Suppose that (X,T) is a transformation group and that E(X) contains just one minimal right ideal. Then $R_h(X) \circ R_k(X) = R_{h\circ k}(X)$ for all $h, k \in A(X)$.

Proof. Let $h, k \in A(X)$ and $(x, y) \in R_h(X) \circ R_k(X)$. Then there exists $z \in X$ such that $(x, z) \in R_k(X)$ and $(z, y) \in R_h(X)$. Hence $(k(x), z) \in \mathcal{P}(X, T)$ and $(h(z), y) \in \mathcal{P}(X, T)$. Therefore by Theorem 3.13(1) $(h(k(x)), h(z)) \in \mathcal{P}(X, T)$. Since E(X) contains just one minimal right ideal, it follows from Remark 2.1 that $\mathcal{P}(X, T)$ is transitive and therefore $(h(k(x)), y) \in \mathcal{P}(X, T)$. Since $h \circ k \in A(X)$, we have that $(x, y) \in R_{h \circ k}(X)$.

Let $(x, y) \in R_{h \circ k}(X)$. By Theorem 3.13(1), $(h(k(x)), y) \in \mathcal{P}(X, T)$ shows that $(k(x), h^{-1}(y)) \in \mathcal{P}(X, T)$. Now let $h^{-1}(y) = z$. Then $(k(x), z)) \in \mathcal{P}(X, T)$ and h(z) = y. Since $(y, y) \in \mathcal{P}(X, T)$, it follows that $(h(z), y) \in \mathcal{P}(X, T)$. Hence $(x, z) \in R_k(X)$ and $(z, y) \in R_h(X)$. Thus $(x, y) \in R_h(X) \circ R_k(X)$.

The next corollary states that if E(X) contains just one minimal right ideal, then $(\{R_h(X) \mid h \in A(X)\}, \circ)$ forms a group.

COROLLARY 3.17. Suppose that (X,T) is a transformation group and that E(X) contains just one minimal right ideal. For arbitrary $h, k, r \in A(X)$, the following properties hold :

- (1) $(R_h(X) \circ R_k(X)) \circ R_r(X) = R_h(X) \circ (R_k(X) \circ R_r(X)).$
- (2) There exists $1_X \in A(X)$ such that
- $\mathcal{P}(X,T) \circ R_h(X) = R_h(X) \circ \mathcal{P}(X,T) = R_h(X).$
- (3) For each $h \in A(X)$ there exists $h^{-1} \in A(X)$ such that $R_h(X) \circ R_{h^{-1}}(X) = R_{h^{-1}}(X) \circ R_h(X) = \mathcal{P}(X,T).$

Proof. This follows from Lemma 3.15, Theorem 3.16, and the fact that A(X) is a group.

COROLLARY 3.18. Let (X, T) be a transformation group. Then the following statements are true :

- (1) $S_h(X) \circ S_k(X) = S_{h \circ k}(X)$ for all $h, k \in A(X)$.
- (2) $(S_h(X) \circ S_k(X)) \circ S_r(X) = S_h(X) \circ (S_k(X) \circ S_r(X))$ for all $h, k, r \in A(X)$.
- (3) $\mathcal{L}(X,T) \circ S_h(X) = S_h(X) \circ \mathcal{L}(X,T) = S_h(X)$ for all $h \in A(X)$.
- (4) $(S_h(X))^{-1} = S_{h^{-1}}(X)$ for all $h \in A(X)$.

Proof. The proof of (1) is analogous to that of Theorem 3.16. Note that $S_h(X) \neq \emptyset$ and $\check{h}\mathcal{L}(X,T) \subset \mathcal{L}(X,T)$ for all $h \in A(X)$, and $\mathcal{L}(X,T)$ is an invariant equivalence relation on X.

REMARK 3.19. (1)The collection $(\{S_h(X) \mid h \in A(X)\}, \circ)$ is a group by Corollary 3.18.

(2) Suppose (X, T) is distal. The collection $(\{R_h(X) \mid h \in A(X)\}, \circ)$ forms a group because (X, T) is distal iff E(X) is a minimal right ideal (see [4, Proposition 5.3]).

References

- J. Auslander, Regular minimal sets 1, Trans. Amer. Math. Soc. 123 (1966), 469– 479.
- [2] I.U. Bronstein, Extension of minimal transformation groups, Sijthoff and Nordhoff Inter. Publ., Netherlands, 1979.
- [3] J.P. Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc. 108 (1963), 88–96.
- [4] R. Ellis, Lectures on topological dynamics, Benjamin, New York, 1969.
- [5] _____, A semigroup associated with a transformation group, Trans. Amer. Math. Soc. **94** (1960), 272–281.
- [6] R. Ellis and W.H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. 94 (1960), 258–271.
- [7] S. Glasner, Compressibility properties in topological dynamics, Amer. J. Math. 97 (1975), 148–171.
- [8] P.S. Shoenfeld, *Regular homomorphisms of minimal sets*, Doctoral Dissertation, Univ. of Maryland (1974).
- [9] J.O. Yu, Regular relations in transformation group, J. Korean Math. Soc. 21 (1984), 41–48.
- [10] _____, The regionally regular relations, J. Chungcheong Math. Soc. 19 (2006), 365–373.

Department of Mathematics Kwangwoon University Seoul 139–701, Korea *E-mail*: songhs@kw.ac.kr