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A NOTE ON FOUR TYPES OF REGULAR RELATIONS

H. S. Song

Abstract. In this paper, we study the four different types of rela-
tions, P(X,T ), R(X,T ), L(X,T ), and S(X,T ) in a transformation
(X,T ), and obtain some of their properties. In particular, we give a
relationship between R(X,T ) and S(X,T ).

1. Introduction

The proximal relation were first studied by Ellis and Gottschalk in
[6]. The syndetically proximal relation were introduced by Clay in [3].
In [1], Auslander defined the regular minimal sets which may be de-
scribed as minimal subsets of enveloping semigroups. In [8], Shoenfeld
introduced the regular homomorphisms which are defined by extending
regular minimal sets to homomorphisms with minimal range. Also Yu
introduced the regular relation and the syndetically regular relation (see
[9], [10]).

In this paper, we study the four different types of relations in a trans-
formation and give some of their properties.

2. Preliminaries

A transformation group (X,T ) will consist of a jointly continuous
action of the topological group T on the compact Hausdorff space X.
The group T , with identity e, is assumed to be topologically discrete
and remain fixed throughout this paper, so we may write X instead of
(X,T ).
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A flow is said to be minimal if every point has dense orbit. Minimal
flows are also referred to as minimal sets.

A homomorphism of transformation groups is a continuous, equivari-
ant map. A one-one homomorphism of X onto X is called an automor-
phism of X. We denote the group of automorphisms of X by A(X).

The compact Hausdorff space X carries a natural uniformity whose
indices are the neighborhoods of the diagonal in X × X. Two points
x, x′ ∈ X are said to be proximal if, given any index α, there exists
t ∈ T such that (xt, x′t) ∈ α. The proximal relation in X, denoted by
P(X,T ), is the set of all proximal pairs in X. X is said to be distal
if P(X,T ) = △X , the diagonal of X ×X and is said to be proximal if
P(X,T ) = X ×X.

Given a transformation group (X,T ), we may regard T as a set of
self-homeomorphisms of X. We define E(X), the enveloping semigroup
of X to be the closure of T in XX , taken with the product topology.
E(X) is at once a transformation group and a sub-semigroup of XX .
The minimal right ideals of E(X), considered as a semigroup, coincide
with the minimal sets of E(X). A subset A of T is said to be syndetic
if there exists a compact subset K of T with T = AK.

Two points x, x′ ∈ X are said to be syndetically proximal if, given
any index α, there exists a syndetic subset A of T such that (xt, x′t) ∈ α
for all t ∈ A. The set of syndetically proximal pairs in X is called the
syndetically proximal relation and is denoted by L(X,T ).

Two points x, x′ ∈ X are said to be regular if there exists h ∈ A(X)
such that (h(x), x′) ∈ P(X,T ). The set of regular pairs in X is called
the regular relation and is denoted by R(X,T ).

Two points x, x′ ∈ X are said to be syndetically regular if there exists
h ∈ A(X) such that (h(x), x′) ∈ L(X,T ). The set of syndetically regular
pairs in X is called the syndetically regular relation and is denoted by
S(X,T ).
X is said to be almost periodic if, given any index α, there exists

a syndetic subset A of T such that xA ⊂ xα for all x ∈ X, where
xα = {y ∈ X | (x, y) ∈ α}. X is said to be locally almost periodic if,
given x ∈ X and U a neighborhood of x, there exists a neighborhood V
of x and a syndetic subset A of T with V A ⊂ U .

Remark 2.1. If E(X) contains just one minimal right ideal, then
P(X,T ) and R(X,T ) are invariant equivalence relations on X (see [4],
[9]).
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Lemma 2.2. ([2]) Suppose (X,T ) is locally almost periodic. Then
P(X,T ) = L(X,T ).

Lemma 2.3. ([4]) (X,T ) is almost periodic iff it is locally almost
periodic and distal.

3. Some results on P(X,T ), R(X,T ), L(X,T ) and S(X,T )

The following lemma is an immediate consequence of the definitions.

Lemma 3.1. Given a transformation group (X,T ), the following state-
ments are true :

(1) L(X,T ) ⊂ P(X,T ) ⊂ R(X,T ).
(2) L(X,T ) ⊂ S(X,T ) ⊂ R(X,T ).
(3) △X ⊂ L(X,T ).
(4) If P(X,T ) = L(X,T ), then R(X,T ) = S(X,T ).

The next lemma leads to a useful characterization of L(X,T ).

Lemma 3.2. ([5]) Given a transformation group (X,T ), the following
statements are true :

(1) L(X,T ) = {(x, y) ∈ X ×X | (x, y)T ⊂ P(X,T )}.
(2) L(X,T ) is an invariant equivalence relation on X.

Lemma 3.3. Given a transformation group (X,T ), the following state-
ments are true :

(1) S(X,T ) = {(x, y) ∈ X ×X | (x, y)T ⊂ R(X,T )}.
(2) If E(X) contains just one minimal right ideal, then S(X,T ) is an

invariant equivalence relation on X.

Proof. (1) Use lemma 3.2(1). Assume that (x, y) ∈ X × X. Then
(x, y) ∈ S(X,T ) iff there exists h ∈ A(X) such that (h(x), y) ∈ L(X,T )
iff there exists h ∈ A(X) such that (h(x), y)T ⊂ P(X,T ) iff there exists
h ∈ A(X) such that (h(xp), yp) ∈ P(X,T ) for all p ∈ E(X) iff (x, y)p ∈
R(X,T ) for all p ∈ E(X) iff (x, y)T ⊂ R(X,T ). This completes the
proof of (1).

(2) It follows immediately from (1) that S(X,T ) is a reflexive, sym-
metric and invariant relation. To see that S(X,T ) is transitive, assume

that (x, y) ∈ S(X,T ) and (y, z) ∈ S(X,T ). Then (x, y)T ⊂ R(X,T )

and (y, z)T ⊂ R(X,T ) and hence (xp, yp) ∈ R(X,T ) and (yp, zp) ∈



180 H. S. Song

R(X,T ) for all p ∈ E(X). Since E(X) contains just one minimal
right ideal, we have from Remark 2.1 that (xp, zp) ∈ R(X,T ) for all

p ∈ E(X). Therefore (x, z)T ⊂ R(X,T ) and hence (x, z) ∈ S(X,T ).

Remark 3.4. P(X,T ), R(X,T ), and S(X,T ) are not equivalence
relations on X. However, if E(X) contains just one minimal right ideal,
then they are invariant equivalence relations on X (see Remark 2.1 and
Lemma 3.3).

Lemma 3.5. If P(X,T ) is closed, then R(X,T ) is also closed.

Proof. Let (x, y) ∈ R(X,T ) and let q ∈ E(X). Then there exists
h ∈ A(X) such that (h(x), y) ∈ P(X,T ). Since P(X,T ) is closed, we
have that (h(x), y)q ∈ P(X,T ) and therefore (h(xq), yq) ∈ P(X,T ).
This implies that (xq, yq) ∈ R(X,T ). Thus R(X,T ) is closed.

Theorem 3.6. Let P(X,T ) be closed. Then

(1) P(X,T ) = L(X,T )
(2) R(X,T ) = S(X,T ).

Proof. To see that (1) holds, assume that (x, y) ∈ P(X,T ). Since

P(X,T ) is closed, it follows that (x, y)T ⊂ P(X,T ). By Lemma 3.2(1),
it follows that P(X,T ) ⊂ L(X,T ) and therefore P(X,T ) = L(X,T ).

The proof of (2) is exactly analogous to that of (1) by Lemma 3.5.

Ellis’ result [4, Lemma 5.17] is a corollary to the above theorem.

Corollary 3.7. Let P(X,T ) be closed. Then it is an invariant
equivalence relation on X.

Remark 3.8. Let (X,T ) is distal. Since P(X,T ) = △X , it follows
that L(X,T ) = P(X,T ) and therefore P(X,T ) is a closed invariant
equivalence relation on X (see [4, Lemma 5.12]).

We can prove Ellis’ result [4, Lemma 5.27] as follows :

Theorem 3.9. Suppose (X,T ) is locally almost periodic. Then the
following statements are true :

(1) L(X,T ) = P(X,T ) ⊂ R(X,T ) = S(X,T ).
(2) P(X,T ) and R(X,T ) are closed invariant equivalence relations on

X.

Proof. (1) This follows from Lemma 2.2 and Lemma 3.1(4).
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(2)] The fact that P(X,T ) is an invariant equivalence relation on X
follows from (1) and Lemma 3.2(2). Since P(X,T ) is transitive, it
follows from [4, Proposition 5.16] that E(X) contains just one min-
imal right ideal and therefore R(X,T ) is an invariant equivalence
relation on X by Remark 2.1. The closed property of P(X,T ) fol-
lows from [4, Proposition 5.26]. The closed property of R(X,T )
follows from Lemma 3.5.

The proof of the following corollary follows immediately from Lemma
2.3.

Corollary 3.10. Suppose (X,T ) is almost periodic. Then the fol-
lowing statements are true :

(1) L(X,T ) = P(X,T ) ⊂ R(X,T ) = S(X,T ).
(2) P(X,T ) and R(X,T ) are closed invariant equivalence relations on

X.

Theorem 3.11. Suppose A(X) = {1X}, where {1X} is the identity
homomorphism of X. Then L(X,T ) = S(X,T ) ⊂ P(X,T ) = R(X,T ).

Proof. Let (x, y) ∈ S(X,T ). Then (x, y)T ⊂ R(X,T ) by Lemma
3.3(1). Since A(X) = {1X}, it follows that P(X,T ) = R(X,T ) and
hence (x, y) ∈ L(X,T ) by Lemma 3.2(1). Therefore S(X,T ) = L(X,T ).

Corollary 3.12. Suppose (X,T ) is minimal and proximal. Then
L(X,T ) = S(X,T ) ⊂ P(X,T ) = R(X,T ).

Proof. The proof uses [7, (8) of Section 1] to show that if (X,T ) is
minimal and proximal, then the only homomorphism (X,T ) → (X,T )
is the identity.

Lemma 3.13. Let h ∈ A(X) and let ȟ : X ×X → X ×X be the map
induced by h. Then the following statements are true :

(1) ȟP(X,T ) ⊂ P(X,T ).
(2) ȟR(X,T ) ⊂ R(X,T ).
(3) ȟL(X,T ) ⊂ L(X,T ).
(4) ȟS(X,T ) ⊂ S(X,T ).

Proof. The proof of (1) is analogous to that of [4, Proposition 5.22].
Let (x, y) ∈ R(X,T ). Then there exists ψ ∈ A(X) with (ψ(x), y) ∈
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P(X,T ). By (1) (h◦ψ(x), h(y)) = (h◦ψ◦h−1◦h(x), h(y)) ∈ P(X,T ).
Since h◦ψ◦h−1 ∈ A(X), it follows that (h(x), h(y)) = ȟ(x, y) ∈ R(X,T ).

Now let (x, y) ∈ L(X,T ). Then (x, y)T ⊂ P(X,T ) by Lemma 3.2(1),
which means that (x, y)p ∈ P(X,T ) for all p ∈ E(X). By (1) ȟ(x, y)p ∈
P(X,T ) for all p ∈ E(X). Therefore (h(x), h(y))T ⊂ P(X,T ) and
hence (h(x), h(y)) ∈ L(X,T ). This proves that ȟL(X,T ) ⊂ L(X,T ).
The proof of (4) is analogous to that of (3).

Theorem 3.14. Let h ∈ A(X) and let ȟ : X ×X → X ×X be the
map induced by h. Then the following statements are true :

(1) If (X,T ) is minimal, then ȟP(X,T ) = P(X,T ).
(2) If (X,T ) is minimal andA(X) is abelian, then ȟR(X,T ) = R(X,T ).

Proof. If (X,T ) is minimal, then it is pointwise almost periodic. Thus
(1) follows from [4, Proposition 5.22]. To see (2), let (y1, y2) ∈ R(X,T ).
Then there exists ψ ∈ A(X) with (ψ(y1), y2) ∈ P(X,T ). By (1) there
exists (x1, x2) ∈ P(X,T ) such that ȟ(x1, x2) = (ψ(y1), y2). Therefore we
have that (ψ−1(h(x1)), h(x2)) = (y1, y2) and ψ

−1 ∈ A(X). Since A(X) is
abelian, it follows that (h(ψ−1(x1)), h(x2)) = ȟ(ψ−1(x1), x2) = (y1, y2),
which proves that ȟR(X,T ) = R(X,T ).

For each h ∈ A(X), we define the subsets Sh(X) and Rh(X) of X×X
as follows:

Sh(X) = {(x, x′) ∈ X ×X | (h(x), x′) ∈ L(X,T )}

Rh(X) = {(x, x′) ∈ X ×X | (h(x), x′) ∈ P(X,T )}.
Note that S1X (X) = L(X,T ) and R1X (X) = P(X,T ).

If V and H are relations in X, then V◦H is the relation in X defined
by as follows :

(x, y) ∈ V◦H if and only if for some element z, (x, z) ∈ H and
(z, y) ∈ V .

Lemma 3.15. Let (X,T ) be a transformation group and let h ∈ A(X).
Then Sh(X) ̸= Ø and Rh(X) ̸= Ø.

Proof. Let h, k ∈ A(X) and let x′ = h(x). Then (h(x), x′) ∈ △X ⊂
L(X,T ) ⊂ P(X,T ) by Lemma 3.1. Therefore (x, x′) ∈ Sh(X) and
(x, x′) ∈ Rh(X). This proves that Sh(X) ̸= Ø and Rh(X) ̸= Ø.
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Theorem 3.16. Suppose that (X,T ) is a transformation group and
that E(X) contains just one minimal right ideal. Then Rh(X)◦Rk(X) =
Rh◦k(X) for all h, k ∈ A(X) .

Proof. Let h, k ∈ A(X) and (x, y) ∈ Rh(X)◦Rk(X). Then there
exists z ∈ X such that (x, z) ∈ Rk(X) and (z, y) ∈ Rh(X). Hence
(k(x), z) ∈ P(X,T ) and (h(z), y) ∈ P(X,T ). Therefore by Theorem
3.13(1) (h(k(x)), h(z)) ∈ P(X,T ). Since E(X) contains just one min-
imal right ideal, it follows from Remark 2.1 that P(X,T ) is transitive
and therefore (h(k(x)), y) ∈ P(X,T ). Since h◦k ∈ A(X), we have that
(x, y) ∈ Rh◦k(X).

Let (x, y) ∈ Rh◦k(X). By Theorem 3.13(1), (h(k(x)), y) ∈ P(X,T )
shows that (k(x), h−1(y)) ∈ P(X,T ). Now let h−1(y) = z. Then
(k(x), z)) ∈ P(X,T ) and h(z) = y. Since (y, y) ∈ P(X,T ), it follows
that (h(z), y) ∈ P(X,T ). Hence (x, z) ∈ Rk(X) and (z, y) ∈ Rh(X).
Thus (x, y) ∈ Rh(X)◦Rk(X).

The next corollary states that if E(X) contains just one minimal right
ideal , then ({Rh(X) | h ∈ A(X)}, ◦) forms a group.

Corollary 3.17. Suppose that (X,T ) is a transformation group
and that E(X) contains just one minimal right ideal. For arbitrary
h, k, r ∈ A(X), the following properties hold :

(1) (Rh(X)◦Rk(X))◦Rr(X) = Rh(X)◦(Rk(X)◦Rr(X)).
(2) There exists 1X ∈ A(X) such that

P(X,T )◦Rh(X) = Rh(X)◦P(X,T ) = Rh(X).
(3) For each h ∈ A(X) there exists h−1 ∈ A(X) such that

Rh(X)◦Rh−1(X) = Rh−1(X)◦Rh(X) = P(X,T ).

Proof. This follows from Lemma 3.15, Theorem 3.16, and the fact
that A(X) is a group.

Corollary 3.18. Let (X,T ) be a transformation group. Then the
following statements are true :

(1) Sh(X)◦Sk(X) = Sh◦k(X) for all h, k ∈ A(X).
(2) (Sh(X)◦Sk(X))◦Sr(X) = Sh(X)◦(Sk(X)◦Sr(X)) for all h, k, r ∈

A(X).
(3) L(X,T )◦Sh(X) = Sh(X)◦L(X,T ) = Sh(X) for all h ∈ A(X).
(4) (Sh(X))−1 = Sh−1(X) for all h ∈ A(X).
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Proof. The proof of (1) is analogous to that of Theorem 3.16. Note
that Sh(X) ̸= Ø and ȟL(X,T ) ⊂ L(X,T ) for all h ∈ A(X), and L(X,T )
is an invariant equivalence relation on X.

Remark 3.19. (1)The collection ({Sh(X) | h ∈ A(X)}, ◦) is a group
by Corollary 3.18.

(2) Suppose (X,T ) is distal. The collection ({Rh(X) | h ∈ A(X)}, ◦)
forms a group because (X,T ) is distal iff E(X) is a minimal right ideal
(see [4, Proposition 5.3]).
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