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A NOTE ON FOUR TYPES OF REGULAR RELATIONS
H. S. SoNnG

ABSTRACT. In this paper, we study the four different types of rela-
tions, P(X,T), R(X,T), L(X,T), and S(X,T) in a transformation
(X,T), and obtain some of their properties. In particular, we give a
relationship between R(X,T) and S(X,T).

1. Introduction

The proximal relation were first studied by Ellis and Gottschalk in
[6]. The syndetically proximal relation were introduced by Clay in [3].
In [1], Auslander defined the regular minimal sets which may be de-
scribed as minimal subsets of enveloping semigroups. In [8], Shoenfeld
introduced the regular homomorphisms which are defined by extending
regular minimal sets to homomorphisms with minimal range. Also Yu
introduced the regular relation and the syndetically regular relation (see
9], [10)).

In this paper, we study the four different types of relations in a trans-
formation and give some of their properties.

2. Preliminaries

A transformation group (X,T) will consist of a jointly continuous
action of the topological group T on the compact Hausdorff space X.
The group T, with identity e, is assumed to be topologically discrete
and remain fixed throughout this paper, so we may write X instead of
(X, T).
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A flow is said to be minimal if every point has dense orbit. Minimal
flows are also referred to as minimal sets.

A homomorphism of transformation groups is a continuous, equivari-
ant map. A one-one homomorphism of X onto X is called an automor-
phism of X. We denote the group of automorphisms of X by A(X).

The compact Hausdorff space X carries a natural uniformity whose
indices are the neighborhoods of the diagonal in X x X. Two points
x,r’ € X are said to be prozimal if, given any index «, there exists
t € T such that (zt,2't) € a. The proximal relation in X, denoted by
P(X,T), is the set of all proximal pairs in X. X is said to be distal
if P(X,T) = Ax, the diagonal of X x X and is said to be prozimal if
PX.T)=X x X.

Given a transformation group (X,T’), we may regard T as a set of
self-homeomorphisms of X. We define F(X), the enveloping semigroup
of X to be the closure of T in X*, taken with the product topology.
E(X) is at once a transformation group and a sub-semigroup of X*.
The minimal right ideals of E(X), considered as a semigroup, coincide
with the minimal sets of E(X). A subset A of T is said to be syndetic
if there exists a compact subset K of T" with T'= AK.

Two points z,2" € X are said to be syndetically proximal if, given
any index «, there exists a syndetic subset A of T" such that (zt,2't) € «
for all t € A. The set of syndetically proximal pairs in X is called the
syndetically proximal relation and is denoted by L(X,T).

Two points z,z" € X are said to be regular if there exists h € A(X)
such that (h(x),2’) € P(X,T). The set of regular pairs in X is called
the regular relation and is denoted by R(X,T).

Two points x, 2" € X are said to be syndetically reqular if there exists
h € A(X) such that (h(x),z") € L(X,T). The set of syndetically regular
pairs in X is called the syndetically regular relation and is denoted by
S(X,T).

X is said to be almost periodic if, given any index «, there exists
a syndetic subset A of T such that xA C za for all x € X, where
za={y € X | (z,y) € a}. X is said to be locally almost periodic if,
given x € X and U a neighborhood of x, there exists a neighborhood V'
of x and a syndetic subset A of T' with VA C U.

REMARK 2.1. If E(X) contains just one minimal right ideal, then
P(X,T) and R(X,T) are invariant equivalence relations on X (see [4],

[9])-
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LEMMA 2.2. ([2]) Suppose (X,T) is locally almost periodic. Then
P(X,T)=L(X,T).

LEMMA 2.3. ([4]) (X,T) is almost periodic iff it is locally almost
periodic and distal.

3. Some results on P(X,T), R(X,T), L(X,T) and S(X,T)

The following lemma is an immediate consequence of the definitions.

LEMMA 3.1. Given a transformation group (X, T), the following state-
ments are true :

(1) L(X,T) C P(X,T) CR(X,T).

(2) L(X,T) CcS(X,T) C R(X,T).

(3) Ax C L(X,T).

(4) IfP(X,T)=L(X,T), then R(X,T) =S(X,T).

The next lemma leads to a useful characterization of £(X,T).

LEMMA 3.2. ([5]) Given a transformation group (X, T), the following
statements are true :
(1) £X,T) = {(z,9) € X x X | (0, 5)T © P(X,T)}.
(2) L(X,T) is an invariant equivalence relation on X.

LEMMA 3.3. Given a transformation group (X, T), the following state-
ments are true :
(1) S(X,T) = {(z,y) € X x X | (z,9)T C R(X,T)}.
(2) If E(X) contains just one minimal right ideal, then S(X,T) is an
invariant equivalence relation on X.

Proof. (1) Use lemma 3.2(1). Assume that (z,y) € X x X. Then
(x,y) € S(X,T) iff there exists h € A(X) such that (h(x),y) € L(X,T)
iff there exists h € A(X) such that (h(x),y)T C P(X,T) iff there exists
h € A(X) such that (h(zp),yp) € P(X,T) for all p € E(X) iff (z,y)p €
R(X,T) for all p € E(X) iff (x,y)T C R(X,T). This completes the
proof of (1).

(2) It follows immediately from (1) that S(X,T') is a reflexive, sym-
metric and invariant relation. To see that S(X,T') is transitive, assume
that (z,y) € S(X,T) and (y,2) € S(X,T). Then (z,y)T C R(X,T)
and (y,2)T C R(X,T) and hence (zp,yp) € R(X,T) and (yp, zp) €
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R(X,T) for all p € E(X). Since E(X) contains just one minimal
right ideal, we have from Remark 2.1 that (xp,zp) € R(X,T) for all

p € E(X). Therefore (z,2)T C R(X,T) and hence (z,2) € S(X,T). O

REMARK 3.4. P(X,T), R(X,T), and S(X,T) are not equivalence
relations on X. However, if E(X) contains just one minimal right ideal,
then they are invariant equivalence relations on X (see Remark 2.1 and
Lemma 3.3).

LEMMA 3.5. If P(X,T) is closed, then R(X,T) is also closed.

Proof. Let (z,y) € R(X,T) and let ¢ € E(X). Then there exists

h € A(X) such that (h(z),y) € P(X,T). Since P(X,T) is closed, we

have that (h(x),y)q € P(X,T) and therefore (h(zq),yq) € P(X,T).

This implies that (xq,yq) € R(X,T). Thus R(X,T) is closed. O
T

)
THEOREM 3.6. Let P(X,T) be closed. Then
(1) P(X,T) = L(X,T)
(2) R(X,T) = S(X,T).

Proof. To see that (1) holds, assume that (z,y) € P(X,T). Since
P(X,T) is closed, it follows that (x,y)T C P(X,T). By Lemma 3.2(1),
it follows that P(X,T) C L(X,T) and therefore P(X,T) = L(X,T).

The proof of (2) is exactly analogous to that of (1) by Lemma 3.5. [

Ellis” result [4, Lemma 5.17] is a corollary to the above theorem.

COROLLARY 3.7. Let P(X,T) be closed. Then it is an invariant
equivalence relation on X.

REMARK 3.8. Let (X,T) is distal. Since P(X,T) = Ax, it follows
that L(X,T) = P(X,T) and therefore P(X,T) is a closed invariant
equivalence relation on X (see [4, Lemma 5.12)).

We can prove Ellis’ result [4, Lemma 5.27] as follows :

THEOREM 3.9. Suppose (X, T) is locally almost periodic. Then the
following statements are true :
(1) L(X,T) = P(X,T) C R(X,T) = S(X, T).
(2) P(X,T) and R(X,T) are closed invariant equivalence relations on
X.

Proof. (1) This follows from Lemma 2.2 and Lemma 3.1(4).
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(2)] The fact that P(X,T) is an invariant equivalence relation on X
follows from (1) and Lemma 3.2(2). Since P(X,T) is transitive, it
follows from [4, Proposition 5.16] that £(X) contains just one min-
imal right ideal and therefore R(X,T') is an invariant equivalence
relation on X by Remark 2.1. The closed property of P(X,T') fol-
lows from [4, Proposition 5.26]. The closed property of R(X,T)
follows from Lemma 3.5.

[

The proof of the following corollary follows immediately from Lemma
2.3.

COROLLARY 3.10. Suppose (X,T) is almost periodic. Then the fol-
lowing statements are true :
(1) L(X,T) = P(X,T) Cc R(X,T) = S(X, T).
(2) P(X,T) and R(X,T) are closed invariant equivalence relations on
X.

THEOREM 3.11. Suppose A(X) = {1x}, where {1x} is the identity
homomorphism of X. Then L(X,T) =8(X,T) C P(X,T) =R(X,T).

Proof. Let (z,y) € S(X,T). Then (z,y)T C R(X,T) by Lemma
3.3(1). Since A(X) = {1x}, it follows that P(X,T) = R(X,T) and
hence (z,y) € L(X,T) by Lemma 3.2(1). Therefore S(X,T) = L(X,T).

0

COROLLARY 3.12. Suppose (X, T) is minimal and proximal. Then
L(X,T)=S(X,T) C P(X,T) = R(X,T).

Proof. The proof uses [7, (8) of Section 1] to show that if (X,T) is
minimal and proximal, then the only homomorphism (X,7T) — (X, T)
is the identity. O]

LEMMA 3.13. Let h € A(X) and let h : X x X — X x X be the map
induced by h. Then the following statements are true :
(1) hP(X,T) Cc P(X,T).
(2) "R(X,T) € R(X,T).
(3) hL(X,T) C L(X,T).
(4) hS(X,T) C S(X,T).

Proof. The proof of (1) is analogous to that of [4, Proposition 5.22].
Let (z,y) € R(X,T). Then there exists ¢ € A(X) with (¢(z),y) €
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P(X,T). By (1) (hoy(x),h(y)) = (hopoh~'oh(x),h(y)) € P(X,T).
Since hoyoh™! € A(X), it follows that (h(z), h(y)) = h(z,y) € R(X,T).
Now let (z,y) € L(X,T). Then (z,y)T C P(X,T) by Lemma 3.2(1),
which means that (z,y)p € P(X,T) for all p € E(X). By (1) h(z,y)p €
P(X,T) for all p € E(X). Therefore (h(z),h(y))T C P(X,T) and
hence (h(z),h(y)) € L£L(X,T). This proves that hL(X,T) C L(X,T).
The proof of (4) is analogous to that of (3). O

THEOREM 3.14. Let h € A(X) and let h: X x X — X x X be the
map induced by h. Then the following statements are true :
(1) If (X, T) is minimal, then hP(X,T) = P(X, T).
(2) If (X, T) is minimal and A(X) is abelian, then hRR(X,T) = R(X,T).

Proof. If (X, T) is minimal, then it is pointwise almost periodic. Thus
(1) follows from [4, Proposition 5.22]. To see (2), let (y1,v2) € R(X,T).
Then there exists ¢ € A(X) with (¢(v1),y2) € P(X,T). By (1) there
exists (21, 2) € P(X, T) such that h(xy,zy) = (w(yl) y2). Therefore we
have that (¢! (h(x1)), h(x2)) = (y1,y2) and =t € A( ). Since A(X) is
abelian, it follows that (h(¢ = (x1)), h(z2)) = MY x1), 22) = (y1,92),
which proves that AR(X,T) = R(X,T). O

For each h € A(X), we define the subsets S;,(X) and Rj,(X) of X x X
as follows:

Sn(X) = {(z,2) € X x X | (h(z),2) € L(X,T)}

By(X) = {(z,2) € X x X [ (h(x),2) € P(X,T)}.
Note that S, (X) = L(X,T) and Ry, (X) = P(X,T).

If V and H are relations in X, then VoH is the relation in X defined
by as follows :
(x,y) € VoH if and only if for some element 2, (z,2) € H and
(z,y) € V.

LEMMA 3.15. Let (X, T) be a transformation group and let h € A(X).
Then S,(X) # @ and R,(X) # O.

Proof. Let h,k € A(X) and let ' = h(z). Then (h(z),2') € Ax C
L(X,T) Cc P(X,T) by Lemma 3.1. Therefore (z,2) €
(xz,2") € Rp(X). This proves that S,(X) # @ and Rh(X) # 0. O
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THEOREM 3.16. Suppose that (X,T) is a transformation group and
that E(X) contains just one minimal right ideal. Then Ry, (X )oRy(X) =
Rpor(X) for all h,k € A(X) .

Proof. Let h,k € A(X) and (z,y) € Rup(X)oRk(X). Then there
exists z € X such that (z,z) € Rg(X) and (2,y) € Ru(X). Hence
(k(x),z) € P(X,T) and (h(z2),y) € P(X,T). Therefore by Theorem
3.13(1) (h(k(x)),h(z)) € P(X,T). Since E(X) contains just one min-
imal right ideal, it follows from Remark 2.1 that P(X,T) is transitive
and therefore (h(k(z)),y) € P(X,T). Since hok € A(X), we have that
(:v,y) € Rhok(X)‘

Let (x,y) € Rpor(X). By Theorem 3.13(1), (h(k(z)),y) € P(X,T)
shows that (k(z),h '(y)) € P(X,T). Now let h™'(y) = 2. Then
(k(z),2)) € P(X,T) and h(z) = y. Since (y,y) € P(X,T), i follows
that (h(z),y) € P(X,T). Hence (z,z) € Rg(X) and (z,y) € Ru(X).
Thus (z,y) € Ru(X)oRk(X). O

The next corollary states that if £(X) contains just one minimal right
ideal , then ({Rn(X) | h € A(X)}, o) forms a group.

COROLLARY 3.17. Suppose that (X,T) is a transformation group
and that E(X) contains just one minimal right ideal. For arbitrary
h,k,r € A(X), the following properties hold :

(1) (Bn(X)oRk(X))oR:(X) = Rp(X)o(Ry(X)oR, (X)).
(2) There exists 1x € A(X) such that
P(X,T)oRu(X) = Ry(X)oP(X,T) = Rp(X).
(3) For each h € A(X) there exists h™' € A(X) such that
Ry(X)oRp-1(X) = Rp-1(X)oRu(X) =P(X,T).

Proof. This follows from Lemma 3.15, Theorem 3.16, and the fact
that A(X) is a group. O

COROLLARY 3.18. Let (X,T) be a transformation group. Then the
following statements are true :

(1) Sp(X)0Sk(X) = Spox(X) for all b,k € A(X).

2) (AS;h())()oSk(X))oST(X) = S(X)o(Sk(X)oS, (X)) for all h,k,r €
X).

(3) L(X,T)oSh(X) = Sp(X)oL(X,T) = Sn(X) for all h € A(X).

(4) (Sp(X))! = Spo1(X) for all h € A(X).
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Proof. The proof Qf (1) is analogous to that of Theorem 3.16. Note
that Sp(X) # @ and hL(X,T) C L(X,T) forall h € A(X), and L(X,T)

is an invariant equivalence relation on X. O]

REMARK 3.19. (1)The collection ({Si(X) | h € A(X)},0) is a group
by Corollary 3.18.

(2) Suppose (X, T) is distal. The collection ({Ry(X) | h € A(X)},0)
forms a group because (X, T) is distal iff E(X) is a minimal right ideal
(see [4, Proposition 5.3]).
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