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INTEGRAL DOMAINS WITH FINITELY MANY STAR

OPERATIONS OF FINITE TYPE

Gyu Whan Chang

Abstract. Let D be an integral domain and SF (D) be the set of
star operations of finite type on D. We show that if |SF (D)| < ∞,
then every maximal ideal of D is a t-ideal. We give an example of
integrally closed quasi-local domains D in which the maximal ideal
is divisorial (so a t-ideal) but |SF (D)| = ∞. We also study the
integrally closed domains D with |SF (D)| ≤ 2.

1. Introduction

Let D be an integral domain with quotient field K. Let F(D) be
the set of nonzero fractional ideals of D. A mapping I 7→ I∗ of F(D)
into F(D) is called a star-operation on D if for all 0 ̸= a ∈ K and
I, J ∈ F(D), the following conditions are satisfied:

(1) (aD)∗ = aD and (aI)∗ = aI∗,
(2) I ⊆ I∗; I ⊆ J implies I∗ ⊆ J∗, and
(3) (I∗)∗ = I∗.

Given any star operation ∗ on D, one can construct a new star operation
∗f by setting I∗f = ∪{J∗|J is a nonzero finitely generated subideal of
I} for all I ∈ F(D). A star operation ∗ on D is said to be of finite type
if ∗f = ∗. Obviously, (∗f )f = ∗f , and hence ∗f is of finite type. Clearly,
I∗ = I∗f for all nonzero finitely generated fractional ideals I of D; so
if D is a Noetherian domain, then each star operation on D is of finite
type. An I ∈ F(D) is called a ∗-ideal if I∗ = I, while a ∗-ideal is called
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a maximal ∗-ideal if it is maximal among proper integral ∗-ideals. Let ∗-
Max(D) denote the set of maximal ∗-ideals of D. It is well known that a
maximal ∗-ideal is a prime ideal; each prime ideal minimal over a ∗f -ideal
is a ∗f -ideal; and ∗f -Max(D) ̸= ∅ if D is not a field. A star operation
∗ on D is said to be stable if (I ∩ J)∗ = I∗ ∩ J∗ for all I, J ∈ F(D).
Recall that ∗ is endlich arithmetisch brauchbar (e.a.b.) if (AB)∗ ⊆ (AC)∗

for all nonzero finitely generated fractional ideals A,B,C of D implies
B∗ ⊆ C∗.

The most well-known examples of star operations are the d-, v-, and
t-operations. The d-operation is just the identity function on F(D); so
d = df . The v-operation is defined by Iv = (I−1)−1, where I−1 = {x ∈
K|xI ⊆ D}, and the t-operation is given by t = vf . We say that a
v-ideal is a divisorial ideal. For two star operations ∗1 and ∗2 on D, we
mean by ∗1 ≤ ∗2 that I∗1 ⊆ I∗2 for all I ∈ F(D). Clearly, if ∗1 ≤ ∗2,
then (∗1)f ≤ (∗2)f . We know that if ∗ is any star operation on D, then
d ≤ ∗ ≤ v, and hence d ≤ ∗f ≤ t. For basic properties of star operations,
see [7, Sections 32 and 34].

Let S(D) (resp., SF (D)) be the set of star operations (resp., star
operations of finite type) on D; so SF (D) ⊆ S(D). In [11, Proposition
2.1], it was shown that if |S(D)| < ∞, then each maximal ideal of
D is a t-ideal. It is clear that if |S(D)| < ∞, then |SF (D)| < ∞,
but not vice versa (for example, if D is an h-local Prüfer domain that
has infinitely many nondivisorial maximal ideals, then |SF (D)| = 1
and |S(D)| = ∞ [11, Corollary 3.2]). So it is reasonable to ask what
happens if |SF (D)| < ∞. Specifically, is it true that |SF (D)| < ∞ if
and only if each maximal ideal of D is a t-ideal ? The purpose of this
paper is to give an answer to this question. Precisely, we show that if
|SF (D)| < ∞, then each maximal ideal of D is a t-ideal. We give an
example of integrally closed domains D in which each maximal ideal is a
t-ideal but |SF (D)| = ∞. We also study the integrally closed domains
D with |SF (D)| ≤ 2.

2. Main Results

Let D be an integral domain with quotient field K. Let S(D) (resp.,
SF (D)) be the set of star operations (resp., star operations of finite
type) on D.
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We begin this section with a necessary condition for |SF (D)| < ∞,
which is a simple modification of [11, Proposition 2.1(2)] that if |S(D)| <
∞, then each maximal ideal of D is a t-ideal.

Lemma 1. Let I be a nonzero finitely generated ideal of D with
Iv = D. For each integer n ≥ 1, let E∗n = (In : (In : E)) for all
E ∈ F(D). Then ∗n is a star operation on D such that (∗n)f ̸= (∗m)f
for all positive integers n ̸= m.

Proof. Note that (In : In) = D; so ∗n is a star operation on D
[10, Proposition 3.2]. Also, by the proof of [11, Proposition 2.1], for
0 < m < n, (In)∗n = In and (In)∗m = Im. Note that In ̸= Im for
n ̸= m [13, Theorem 76] and In is finitely generted for all n ≥ 1. Hence
(In)(∗n)f = (In)∗n = In ̸= Im = (In)∗m = (In)(∗m)f . Thus (∗n)f ̸=
(∗m)f .

Theorem 2. If |SF (D)| < ∞, then each maximal ideal of D is a
t-ideal.

Proof. Assume to the contrary that there is a maximal ideal M of D
with Mt = D. Then there is a nonzero finitely generated subideal I of
M such that Iv = It = D. Hence if we set E∗n = (In : (In : E)) for each
E ∈ F(D), then ∗n is a star operation on D such that (∗n)f ̸= (∗m)f
for all positive integers m ̸= n by Lemma 1. Thus |SF (D)| = ∞, a
contradiction. Thus each maximal ideal of D is a t-ideal.

Let SFs(D) be the set of stable star operations of finite type on D; so
SFs(D) ⊆ SF (D). In [3, Theorem 4], it was shown that if Ω is the set of
nonzero prime ideals P ofD with Pt = D, then |Ω|+1 ≤ |SFs(D)| ≤ 2|Ω|.
Hence each maximal ideal of D is a t-ideal if and only if |SFs(D)| = 1.

Corollary 3. If |SFs(D)| ≥ 2, then |SF (D)| = ∞.

Proof. If |SFs(D)| ≥ 2, then D has at least one maximal ideal that is
not a t-ideal [3, Theorem 4]. Thus |SF (D)| = ∞ by Theorem 2.

As in [8], we say that a prime ideal P of D is strongly prime if xy ∈ P
and x, y ∈ K imply x ∈ P or y ∈ P , while D is a pseudo-valuation
domain (PVD) if every prime ideal of D is strongly prime. It is known
that D is a PVD if and only if D is quasi-local whose maximal ideal is
strongly prime if and only if there exists a valuation overring V of D
such that Spec(V ) = Spec(D) [8, Theorem 2.7].
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We next give an example of integral domains whose maximal ideals
are t-ideals but |SF (D)| = ∞, which shows that the converse of Theorem
2 does not hold.

Example 4. Let R be the field of real numbers, y, z be indeterminates
over R, K = R(y, z) be the quotient field of the polynomial ring R[y, z],
X be an indeterminate over K, V = K[[X]] be the power series ring over
K (so V is a rank-one DVR), and D = R+XK[[X]]. It is clear that D
is an integrally closed PVD, V/XK[[X]] = K, and D/XK[[X]] = R (so
trdeg(K,R) = 2). Hence D has infinitely many e.a.b. star operations of
finite type [4, Theorem 4.10 ]. Thus |SF (D)| = ∞.

Given an e.a.b. star operation on an integrally closed domain D, the
Kronecker function ring of D with respect to ∗ is defined by

Kr(D, ∗) = {0} ∪ {f
g
| 0 ̸= f, g ∈ D[X] and c(f)∗ ⊆ c(g)∗},

where c(h) denotes the ideal of D generated by the coefficients of an
h ∈ D[X]. It is well known that Kr(D, ∗) is a Bezout domain and
Kr(D, ∗) ∩K = D [7, Theorem 32.7].

Let SFe(D) be the set of e.a.b. star operations of finite type on D.
It is known that SFe(D) ̸= ∅ if and only if D is integrally closed [7,
Corollary 32.8]. Also, there is a bijection between SFe(D) and the set
of Kronecker function rings of D (cf. [7, Remark 32.9]). We next give a
lower bound of |SFe(D)|. (Note that Example 4 shows that the equality
of Proposition 5 need not hold, but the equality attains when D is a
Prüfer domain.)

Proposition 5. If D is integrally closed, then |SFs(D)| ≤ |SFe(D)|.
Proof. Let ∗ ∈ SFs(D). Then we can construct an e.a.b. star op-

eration ∗c of finite type on D such that ∗-Max(D) = ∗c-Max(D) [2,
Lemma 3.1]. Recall that if ∗′ ∈ SFs(D), then I∗

′
= ∩P∈∗′-Max(D)IDP for

all I ∈ F(D) [1, Corollary 4.2]; so if ∗1 ∈ SFs(D) with ∗1 ̸= ∗, then
∗1-Max(D) ̸= ∗-Max(D). Hence ∗c-Max(D) ̸= (∗1)c-Max(D), and thus
∗c ̸= (∗1)c. This completes the proof.

We next study the integrally closed domains D with |SF (D)| ≤ 2.
To do this, we first need the notion of a b-operation that is an e.a.b.
star operation of finite type on an integrally closed domain D defined
by Eb = ∩{EV |V is a valuation overring of D} for all E ∈ F(D) [7,
pp. 397-398]. Clearly, the b-operation is defined on D if and only if D is
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integrally closed [7, Corollary 32.8]. Also, it is easy to see that d = b if
and only if D is a Prüfer domain [7, Theorem 24.7]. This result implies
the following theorem.

Theorem 6. If D is integrally closed, the following statements are
equivalent.

(1) D is a Prüfer domain.
(2) |SF (D)| = 1.
(3) |SFs(D)| = |SF (D)| < ∞.

Proof. (1) ⇒ (3) If D is a Prüfer domain, then d = t, and thus
SFs(D) = SF (D) = {d}. (3) ⇒ (2) This follows directly from Corollary
3. (2) ⇒ (1) Note that {d, b} ⊆ SF (D); so d = b. Thus D is a Prüfer
domain.

Recall that D is a v-domain if the v-operation on D is an e.a.b star
operation; so Kr(D, v) is defined on a v-domain D and Kr(D, b) ⊆
Kr(D, ∗) ⊆ Kr(D, v) for any e.a.b. star operation ∗ on D. It is known
that D is a v-domain if and only if each nonzero finitely generated ideal
of D is v-invertible [7, Theorem 34.6]. Also, b = t if and only if D is
a v-domain [5, Proposition 35]. As in [4], we say that D is a vacant
domain if D has a unique Kronecker function ring. It is clear that D
is a vacant domain if and only if the b-operation is a unique e.a.b. star
operation of finite type on D.

It is clear that PvMDs are v-domains, but v-domains need not be
PvMDs (for example, a one-dimensional completely integrally closed do-
main that is not a valuation domain is a v-domain but not a PvMD (cf.
[6, pp. 157-161])). However, if each maximal t-ideal of D is divisorial,
then v-domains are PvMDs. (For if I is a nonzero finitely generated
fractional ideal of D, then (II−1)v = D, and hence II−1 * P , because
Pv = P , for all P ∈ t-Max(D). Thus (II−1)t = D.)

Theorem 7. If D is an integrally closed domain with |SF (D)| = 2,
then

(1) D is not a Prüfer domain,
(2) D is a vacant v-domain whose maximal ideals are t-ideals, and
(3) D has a nondivisorial maximal t-ideal.

Proof. (1) This follows directly from Theorem 6.
(2) Recall that d ≤ b ≤ t. If d = b, then D is a Prüfer domain,

a contradiction. Hence b = t by hypothesis, and thus D is a vacant
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v-domain [5, Proposition 35]. Also, by Theorem 2, each maximal ideal
of D is a t-ideal.

(3) By the remark before Theorem 7, if each maximal ideal of D is
divisorial, then a v-domain is a Prüfer domain. Thus D has at least one
maximal t-ideal that is not a divisorial ideal.

Corollary 8. Let D be an integrally closed PVD with maximal
ideal M .

(1) If D is not a valuation domain, then |SF (D)| ≥ 3.
(2) If |S(D)| = 2, then D is a valuation domain and Mv = D.
(3) |SF (D)| ̸= 2.

Proof. (1) If |SF (D)| = 1, then D is a Prüfer domain by Theorem 6,
and since D is quasi-local, D is a valuation domain. Next, if |SF (D)| =
2, then D is a v-domain by Theorem 7, and hence D is a Prüfer domain
because Mv = M . Thus D is a valuation domain.

(2) Note that d ≤ b ≤ t ≤ v; so d ̸= v and either d = b or b = v. If
d = b, then D is a valuation domain, and since d ̸= v, we have Mv = D
[9, Lemma 5.2]. Next, if b = v (so t = v), then S(D) = SF (D) = {d, v},
and hence D is a valuation domain by (1). But, in this case, d = t = v,
a contradiction. Moreover, since d ̸= v, we have Mv = D [9, Lemma
5.2].

(3) If D is a valuation domain, then |SF (D)| = 1. Thus |SF (D)| ̸= 2
by (1).

Added to the proof. Recently, Houston, Mimouni and Park showed that
if D is an integrally closed domain, then |SF (D)| < ∞ if and only if
D is a Prüfer domain [12, Theorem 5.3]. Thus, there does not exist
an integrally closed domain D with |SF (D)| = 2 (cf. Theorem 7) and
if D is an integrally closed PVD that is not a valuation domain, then
|SF (D)| = ∞ (cf. Corollary 8(1) and (3)).
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