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THE PROPERTIES OF FUZZY CONNECTIONS

Yong Chan Kim∗ and Young Sun Kim

Abstract. We investigate the properties of fuzzy connections. We
find generating functions which induce fuzzy connections. In par-
ticular, we show that their connections relate to fuzzy relations.

1. Introduction

Wille [7] introduced the formal concept lattices by allowing some
uncertainty in data as examples as Galois, dual Galois, residuated and
dual residuated connections. Formal concept analysis is an important
mathematical tool for data analysis and knowledge processing [1-4,7].
Orlowska and Rewitzky [5] investigated the algebraic structures of op-
erators of Galois-style connections. Bělohlávek [1-2] introduced the
formal concept lattices with respect to fuzzy Galois connections on a
complete residuated lattice. Fuzzy Galois connections are developed
many directions [3,4,8]

In this paper, we investigate the properties of fuzzy connections
(Galois, dual Galois, residuated and dual residuated connections) on a
complete residuated lattice. We find generating functions which induce
fuzzy connections (Galois, dual Galois, residuated and dual residuated
connections). In particular, we show that their connections relate to
fuzzy relations.

2. Preliminaries

Definition 2.1. [1,2,6] A triple (X,≤,⊙) is called a complete resid-
uated lattice iff it satisfies the following properties:
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(L1) (X,≤, 1, 0) is a complete lattice where 1 is the universal upper
bound and 0 denotes the universal lower bound;

(L2) (X,⊙, 1) is a commutative monoid;
(L3) ⊙ is distributive over arbitrary joins, i.e.

(
∨
i∈Γ

xi) ⊙ y =
∨
i∈Γ

(xi ⊙ y), ∀xi, y ∈ L.

Let (L,≤,⊙) be a complete residuated lattice. For each x, y ∈ L,
we define

x → y =
∨

{z ∈ L | x⊙ z ≤ y}.

Then it satisfies Galois correspondence, that is,
(x⊙ y) ≤ z iff x ≤ (y → z).

Remark 2.2. [1,2,6](1) A completely distributive lattice is a com-
plete residuated lattice. Moreover, the unit interval ([0, 1],≤,∨,∧, 0, 1)
is a complete residuated lattice.

(2) The unit interval with a left-continuous t-norm t, ([0, 1],≤, t), is
a complete residuated lattice.

Let (L,≤,⊙) be a complete residuated lattice. An order reversing
map ∗ : L → L defined by a∗ = a → 0 is called a strong negation if
a∗∗ = a for each a ∈ L.

In this paper, we assume (L,≤,⊙,∗ ) is a complete residuated lattice
with a strong negation ∗. For α ∈ L,A, 1x ∈ LX , we denote

(α⊙A)(x) = α⊙A(x), (α → A)(x) = α → A(x).

1x(x) = 1, 1x(y) = 0, ∀y ∈ X − {x}.

Lemma 2.3. [6] For each x, y, z, xi, yi ∈ L, we have the following
properties.

(1) If y ≤ z, x⊙ y ≤ x⊙ z, x → y ≤ x → z and z → x ≤ y → x.
(2) x⊙ y ≤ x ∧ y.
(3) x → (

∧
i∈Γ yi) =

∧
i∈Γ(x → yi) and (

∨
i∈Γ xi) → y =

∧
i∈Γ(xi →

y).
(4) x → (

∨
i∈Γ yi) ≥

∨
i∈Γ(x → yi).

(5) (
∧

i∈Γ xi) → y ≥
∨

i∈Γ(xi → y).
(6) (x⊙ y) → z = x → (y → z) = y → (x → z).
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(7) x⊙ (x → y) ≤ y and x → y ≤ (y → z) → (x → z).
(8) y ⊙ z ≤ x → (x⊙ y ⊙ z) and x⊙ (x⊙ y → z) ≤ y → z.
(9) x → y ≤ (x⊙ z) → (y ⊙ z).
(10) (x → y) ⊙ (y → z) ≤ x → z.
(11) x ≤ y → z iff y ≤ x → z.
(12) x → y = 1 iff x ≤ y.
(13) x → y = y∗ → x∗.
(14)

∧
i∈Γ x

∗
i = (

∨
i∈Γ xi)

∗ and
∨

i∈Γ x
∗
i = (

∧
i∈Γ xi)

∗.

Definition 2.4. [8] Let X be a set. A function eX : X×X → L is
called a fuzzy partially order on X if it satisfies the following conditions:

(E1) eX(x, x) = 1 for all x ∈ X,
(E2) eX(x, y) ⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X,
(E3) if eX(x, y) = eX(y, x) = 1, then x = y.
The pair (X, eX) is a fuzzy partially order set (simply, fuzzy poset).

We define a function eLX : LX × LX → L as

eLX (A,B) =
∧
x∈X

(A(x) → B(x)).

Then (LX , eLX ) is a fuzzy poset from Lemma 2.3 (10-11).
We define fuzzy connections in a sense [8].

Definition 2.5. Let (X, eX) and (Y, eY ) be fuzzy posets and f :
X → Y and g : Y → X maps.

(1) (eX , f, g, eY ) is called a Galois connection if

eY (y, f(x)) = eX(x, g(y)), ∀x ∈ X, y ∈ Y.

(2)(eX , f, g, eY ) is called a dual Galois connection if

eY (f(x), y) = eX(g(y), x), ∀x ∈ X, y ∈ Y.

(3) (eX , f, g, eY ) is called a residuated connection if

eY (f(x), y) = eX(x, g(y)), ∀x ∈ X, y ∈ Y.

(4) (eX , f, g, eY ) is called a dual residuated connection if

eY (y, f(x)) = eX(g(y), x), ∀x ∈ X, y ∈ Y.
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3. The properties of fuzzy connections

Theorem 3.1. The following statements hold:
(1) There exists a Galois connection (eLX , F,G, eLY ) iff there exists a

function F : LX → LY with F (
∨

i∈Γ Ai) =
∧

i∈Γ F (Ai) and F (α⊙A) =
α → F (A) and F (1x)(y) = G(1y)(x), ∀x ∈ X, y ∈ Y.

(2) There exists a residuated connection (eLX , F,G, eLY ) iff there
exists a function F : LX → LY with F (

∨
i∈Γ Ai) =

∨
i∈Γ F (Ai) and

F (α⊙A) = α⊙ F (A) and F (1x)∗(y) = G(1∗y)(x), ∀x ∈ X, y ∈ Y.
(3) There exists a dual Galois connection (eLX , F,G, eLY ) iff there

exists a function F : LX → LY with F (
∧

i∈Γ Ai) =
∨

i∈Γ F (Ai), F (α →
A) = α⊙ F (A) and F (1∗x)(y) = G(1∗y)(x), ∀x ∈ X, y ∈ Y .

(4) There exists a dual residuated connection (eLX , F,G, eLY ) iff
there exists a function F : LX → LY with F (

∧
i∈Γ Ai) =

∧
i∈Γ F (Ai)

and F (α → A) = α → F (A) and F (1∗x)(y) = G(1y)∗(x), ∀x ∈ X, y ∈
Y .

Proof. (1) (⇒) By Lemma 2.3 (3,6), we have

eLY (B,F (
∨
i∈Γ

Ai)) = eLX (
∨
i∈Γ

Ai, G(B)) =
∧
i∈Γ

eLX (Ai, G(B))

=
∧
i∈Γ

eLY (B,F (Ai)) = eLY (B,
∧
i∈Γ

F (Ai)),

eLY (B,F (α⊙A)) = eLX (α⊙A,G(B)) = α → eLX (A,G(B))

= α → eLY (B,F (A)) = eLY (α⊙B,F (A))

= eLY (B,α → F (A)).

For B = 1y ∈ LY ,

F (
∨
i∈Γ

Ai)(y) = eLY (1y, F (
∨
i∈Γ

Ai)) = eLY (1y,
∧
i∈Γ

F (Ai))

=
∧
i∈Γ

F (Ai)(y),

F (α⊙A)(y) = eLY (1y, F (α⊙A)) = eLY (1y, α → F (A))

= α → F (A)(y).

Moreover, G(1y)(x) = eLX (1x, G(1y)) = eLY (1y, F (1x)) = F (1x)(y).
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(⇐) Since C =
∨

x∈X(C(x) ⊙ 1x), we have

F (C)(y) = F (
∨
x∈X

(C(x) ⊙ 1x))(y) =
∧

(C(x) → F (1x)(y)).

We define a function G : LY → LX with

G(B)(x) =
∨

{C(x) | F (C) ≥ B}

=
∨

{C(x) |
∧

(C(x) → F (1x)(y) ≥ B(y)}
(by Lemma 2.3 (11))

=
∨

{C(x) |
∧

(B(y) → F (1x)(y) ≥ C(x)}

=
∧

(B(y) → F (1x)(y)).

eLY (B,F (A)) =
∧
y∈Y

(B(y) → F (
∨
x∈X

(A(x) ⊙ 1x))(y))

=
∧
y∈Y

(B(y) →
∧
x∈X

(A(x) → F (1x)(y)))

=
∧
y∈Y

∧
x∈X

(B(y) → (A(x) → F (1x)(y)))

(by Lemma 2.3 (6))

=
∧
x∈X

(A(x) →
∧
y∈Y

(B(y) → F (1x)(y)))

=
∧
x∈X

(A(x) → G(B)(x)) = eLX (A,G(B)).

(2)(⇒)

eLY (F (
∨
i∈Γ

Ai), B) = eLX (
∨
i∈Γ

Ai, G(B)) =
∧
i∈Γ

eLX (Ai, G(B)),

=
∧
i∈Γ

eLY (F (Ai), B) = eLY (
∨
i∈Γ

F (Ai), B)

eLY (F (α⊙A), B) = eLX (α⊙A,G(B)) = α → eLX (A,G(B))

= α → eLY (F (A), B) = eLY (α⊙ F (A), B).
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For B = 1∗y ∈ LY , by Lemma 2.3 (13), F (
∨

i∈Γ Ai) =
∨

i∈Γ F (Ai) from:

eLY (F (
∨
i∈Γ

Ai), 1
∗
y) = eLY (1y, F (

∨
i∈Γ

Ai)
∗) = F (

∨
i∈Γ

Ai)
∗(y)

eLY (
∨
i∈Γ

F (Ai), 1
∗
y) = (

∨
i∈Γ

F (Ai))
∗(y).

Similarly, F (α ⊙ A) = α ⊙ F (A) for all α ∈ L. Since G(1∗y) ∈ LX

and F (1x) ∈ LY , F (1x)∗(y) = eLY (1y, F (1x)∗) = eLY (F (1x), 1∗y) =
eLX (1x, G(1∗y)) = G(1∗y)(x).

(⇐) Since C =
∨

x∈X(C(x) ⊙ 1x), we have

F (C)(y) = F (
∨
x∈X

(C(x) ⊙ 1x))(y) =
∨
x∈X

(C(x) ⊙ F (1x)(y)).

We define a function G : LY → LX with

G(B)(x) =
∨

{C(x) | F (C) ≤ B}

=
∨

{C(x) |
∨

(C(x) ⊙ F (1x)(y) ≤ B(y)}

=
∧
y∈Y

(F (1x)(y) → B(y)).

eLY (F (A), B) =
∧
y∈Y

(F (
∨
x∈X

(A(x) ⊙ 1x))(y) → B(y))

=
∧
y∈Y

(
∨
x∈X

(A(x) ⊙ F (1x)(y) → B(y))

=
∧
y∈Y

∧
x∈X

(A(x) → (F (1x)(y) → B(y)))

=
∧
x∈X

(A(x) →
∧
y∈Y

(F (1x)(y) → B(y)))

=
∧
x∈X

(A(x) → G(B)(x)) = eLX (A,G(B)).
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(3)(⇒)

eLY (F (
∧
i∈Γ

Ai), B) = eLX (G(B),
∧
i∈Γ

Ai) =
∧
i∈Γ

eLX (G(B), Ai)

=
∧
i∈Γ

eLY (F (Ai), B) = eLY (
∨
i∈Γ

F (Ai), B)

eLY (F (α → A), B) = eLX (G(B), α → A) = α → eLX (G(B), A),

= α → eLX (F (A), B) = eLX (α⊙ F (A), B).

For B = 1∗y ∈ LY , by a similar method as in (2), we have F (
∧

i∈Γ Ai) =∨
i∈Γ F (Ai) and F (α → A) = α⊙ F (A).

F (1∗x)∗(y) =
∧
w∈Y

(1y(w) → F (1∗x)∗(w))

= eLY (F (1∗x), 1∗y) = eLX (G(1∗y), 1∗x)

= G(1∗y)∗(x).

(⇐) For A(x) =
∧

z∈X(1z(x) → A(z)) =
∧

z∈X(A∗(z) → 1∗z(x)), we
have F (A)(y) = F (

∧
z∈X(A∗(z) → 1∗z))(y) =

∨
z∈X(A∗(z)⊙F (1∗z)(y)),

we define

G(B)(x) =
∧

{C(x) | F (C) ≤ B}

=
∧

{C(x) | F (
∧
x∈X

(C∗(x) → 1∗x)) ≤ B}

=
∨

{C(x) |
∨
x∈X

(C∗(x) ⊙ F (1∗x)(y) ≤ B(y)}

=
∨

{C(x) | C∗(x) ≤
∧
y∈Y

(F (1∗x)(y) → B(y))}

=
∨
y∈Y

(F (1∗x)(y) ⊙B∗(y)).
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eLY (F (A), B) =
∧
y∈Y

(
∨
x∈X

(A∗(x) ⊙ F (1∗x)(y) → B(y))

=
∧
y∈Y

∧
x∈X

((B∗(y) ⊙ F (1∗x)(y) → A(x))

=
∧
x∈X

(
∨
y∈Y

(B∗(y) ⊙ F (1∗x)(y) → A(x))

=
∧
x∈X

(G(B)(x) → A(x)) = eLX (G(B), A).

(4)(⇒) We have:

eLY (B,F (
∧
i∈Γ

Ai)) = eLX (G(B),
∧
i∈Γ

Ai) =
∧
i∈Γ

eLX (G(B), Ai)

=
∧
i∈Γ

eLY (B,F (Ai)) = eLY (B,
∧
i∈Γ

F (Ai))

eLY (B,F (α → A)) = eLX (G(B), α → A) = eLX (α⊙G(B), A)

= α → eLX (G(B), A) = α → eLX (B,F (A)) = eLX (B,α → F (A))

For B = 1y ∈ LY , by a similar method as in (1), we have F (
∧

i∈Γ Ai) =∧
i∈Γ F (Ai) and F (α → A) = α → F (A).

F (1∗x)(y) =
∧
w∈Y

(1y(w) → F (1∗x)(w))

= eLY (1y, F (1∗x)) = eLX (G(1y), 1∗x)

= G(1y)∗(x).

(⇐) For A(x) =
∧

z∈X(1z(x) → A(z)) =
∧

z∈X(A∗(z) → 1∗z(x)),
we have F (A)(y) = F (

∧
z∈X(A∗(z) → 1∗z))(y) =

∧
z∈X(A∗(z) →
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F (1∗z)(y)), we define

G(B)(x) =
∧

{C(x) | F (C) ≥ B}

=
∧

{C(x) | F (
∧
x∈X

(C∗(x) → 1∗x)) ≥ B}

=
∧

{C(x) |
∧
x∈X

(C∗(x) → F (1∗x)(y) ≥ B(y)}

=
∧

{C(x) | C∗(x) ≤
∧
y∈Y

(B(y) → F (1∗x)(y))}

=
∧
y∈Y

(F (1∗x)∗(y) ⊙B(y)).

eLY (B,F (A)) =
∧
y∈Y

(B(y) →
∧
x∈X

(F (1∗x)∗(y) → A(x)))

=
∧
y∈Y

∧
x∈X

((B(y) ⊙ F (1∗x)∗(y) → A(x))

=
∧
x∈X

(
∨
y∈Y

(B(y) ⊙ F (1∗x)∗(y) → A(x))

=
∧
x∈X

(G(B)(x) → A(x)) = eLX (G(B), A).

�

Theorem 3.2. (1) (eLX , F,G, eLY ) is a Galois connection iff there
exists R : X × Y → L such that

F (A)(y) =
∧
x∈X

(A(x) → R(x, y)), G(B)(x) =
∧
y∈Y

(B(y) → R(x, y)).

(2) (eLX , F,G, eLY ) is a residuated connection iff there exists R :
X × Y → L such that

F (A)(y) =
∨
x∈X

(A(x) ⊙R(x, y)), G(B)(x) =
∧
y∈Y

(R(x, y) → B(y)).
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(3) (eLX , F,G, eLY ) is a dual Galois connection iff there exists R :
X × Y → L such that

F (A)(y) =
∨
x∈X

(A∗(x) ⊙R(x, y)), G(B)(x) =
∧
y∈Y

(R(x, y) ⊙B∗(y)).

(4) (eLX , F,G, eLY ) is a dual residuated connection iff there exists
R ⊂ X × Y such that

F (A)(y) =
∧
y∈Y

(R(x, y) → A(x)), G(B)(x) =
∨
y∈Y

(B(y) ⊙R(x, y)).

Proof. (1)(⇒)

F (1x)(y) = eLY (1y, F (1x)) = eLX (1x, G(1y))

=
∧
z∈X

(
1x(z) → G(1y)(z)

)
= G(1y)(x).

Put R(x, y) = F (1x)(y) = G(1y)(x). Then

F (A)(y) = eLY (1y, F (A)) = eLX (A,G(1y))

=
∧
x∈X

(
A(x) → G(1y)(x)

)
=

∧
x∈X

(
A(x) → R(x, y)

)
.

G(B)(x) = eLX (1x, G(B)) = eLY (B,F (1x))

=
∧
y∈Y

(
B(y) → F (1x)(y)

)
=

∧
y∈Y

(
B(y) → R(x, y)

)
.
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(⇐)

eLY (B,F (A)) =
∧
y∈Y

(B(y) → F (A)(y))

=
∧
y∈Y

(B(y) →
∧
x∈X

(A(x) → R(x, y)))

=
∧
y∈Y

∧
x∈X

(B(y) → (A(x) → R(x, y)))

=
∧
x∈X

(A(x) →
∧
y∈Y

(B(y) → R(x, y)))

=
∧
x∈X

(A(x) → G(B)(x)) = eLX (A,G(B)).

(2)(⇒)

F (1x)∗(y) = eLY (F (1x), 1∗y) = eLX (1x, G(1∗y))

= G(1∗y)(x).

Put R(x, y) = F (1x)(y) = (G(1∗y))∗, then

F (A)∗(y) = eLY (F (A), 1∗y) = eLX (A,G(1∗y))

=
∧
x∈X

(A(x) → G(1∗y)(x))

=
( ∨

x∈X

(A(x) ⊙G(1∗y)∗(x))
)∗

F (A)(y) =
∨
x∈X

(A(x) ⊙R(x, y)).

G(B)(x) = eLX (1x, G(B)) = eLY (F (1x), B)

=
∧
y∈Y

(F (1x)(y) → B(y))

=
∧
y∈Y

(R(x, y) → B(y)).
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(⇐)

eLY (F (A), B) =
∧
y∈Y

(
∨
x∈X

(A(x) ⊙R(x, y)) → B(y))

=
∧
y∈Y

∧
x∈X

(A(x) → (R(x, y) → B(y)))

=
∧
x∈X

(A(x) →
∧
y∈Y

(R(x, y) → B(y)))

=
∧
x∈X

(A(x) → G(B)(x)) = eLX (A,G(B)).

(3)(⇒)

F (1∗x)∗(y) = eLY (F (1∗x), 1∗y) = eLX (G(1∗y), 1∗x)

= G(1∗y)∗(x).

Put R(x, y) = F (1∗x)(y) = G(1∗y)(x), then

F (A)∗(y) = eLY (F (A), 1∗y) = eLX (G(1∗y), A)

=
∧
x∈X

(G(1∗y)(x) → A(x))

=
( ∨

x∈X

(A∗(x) ⊙G(1∗y)(x))
)∗

F (A)(y) =
∨
x∈X

(A∗(x) ⊙R(x, y)).

G(B)∗(x) = eLX (G(B), 1∗x) = eLY (F (1∗x), B)

=
∧
y∈Y

(F (1∗x)(y) → B(y))

=
( ∨

y∈Y

(B∗(y) ⊙ F (1∗x)(y))
)∗

G(B)(x) =
∨
y∈Y

(B∗(y) ⊙R(x, y)).
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(⇐)

eLY (F (A), B) =
∧
y∈Y

(
∨
x∈X

(A∗(x) ⊙R(x, y)) → B(y))

=
∧
y∈Y

∧
x∈X

((B∗(y) ⊙R(x, y)) → A(x))

=
∧
x∈X

(
∨
y∈Y

(B∗(y) ⊙R(x, y)) → A(x))

=
∧
x∈X

(G(B)(x) → A(x)) = eLX (G(B), A).

(4)(⇒)

F (1∗x)(y) =
∧
w∈Y

(1y(w) → F (1∗x)(w))

= eLY (1y, F (1∗x)) = eLX (G(1y), 1∗x)

= G(1y)∗(x).

Put R(x, y) = F (1∗x)∗(y) = G(1y). We have

F (A)(y) = eLY (1y, F (A)) = eLX (G(1y), A)

=
∧
x∈X

(G(1x)(y) → A(x))

=
∧
x∈X

(R(x, y) → A(x)).

G(B)∗(x) = eLX (G(B), 1∗x) = eLY (B,F (1∗x))

=
∧
y∈Y

(B(y) → F (1∗x)(y))

=
( ∨

y∈Y

(B(y) ⊙ F (1∗x)∗(y))
)∗

G(B)(x) =
∨
y∈Y

(R(x, y) ⊙B(y)).



206 Yong Chan Kim and Young Sun Kim

(⇐)

eLY (B,F (A)) =
∧
y∈Y

(B(y) →
∧
x∈X

(R(x, y) → A(x)))

=
∧
y∈Y

∧
x∈X

((B(y) ⊙R(x, y)) → A(x))

=
∧
x∈X

(
∨
y∈Y

(B(y) ⊙R(x, y)) → A(x))

=
∧
x∈X

(G(B)(x) → A(x)) = eLX (G(B), A).

�

Theorem 3.3. (1) (eLX , F,G, eLY ) is a Galois connection iff there
exists F : LX → LY with F (1x)(y) = Γx(y) such that F (

∨
i∈Γ Ai) =∧

i∈Γ F (Ai) and F (α⊙A) = α → F (A).
(2) (eLX , F,G, eLY ) is a residuated connection iff there exists F :

LX → LY with F (1x)(y) = Γx(y) such that F (
∨

i∈Γ Ai) =
∨

i∈Γ F (Ai)
and F (α⊙A) = α⊙ F (A).

(3) (eLX , F,G, eLY ) is a dual Galois connection iff there exists F :
LX → LY with F (1∗x)(y) = ∆x(y) such that F (

∧
i∈Γ Ai) =

∨
i∈Γ F (Ai)

and F (α → A) = α⊙ F (A).
(4) (eLX , F,G, eLY ) is a dual residuated connection iff there ex-

ists F : LX → LY with F (1∗x)(y) = ∆x(y) such that F (
∧

i∈Γ Ai) =∧
i∈Γ F (Ai) and F (α → A) = α → F (A).

Proof. (1) (⇒) It follows from Theorem 3.1(1).
(⇐) Since C =

∨
x∈X(C(x) ⊙ 1x), F (C)(y) = F (

∨
x∈X(C(x) ⊙

1x))(y) =
∧

(C(x) → F (1x)(y)). Thus,

G(B)(x) =
∨

{C(x) | F (C) ≥ B}

=
∨

{C(x) |
∧

(C(x) → F (1x)(y)) ≥ B(y)}

=
∨

{C(x) |
∧

(B(y) → F (1x)(y)) ≥ C(x)}

=
∧

(B(y) → F (1x)(y)) =
∧

(B(y) → Γx(y)),
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eLY (B,F (A)) =
∧
y∈Y

(B(y) → F (
∨
x∈X

(A(x) ⊙ 1x))(y))

=
∧
y∈Y

(B(y) →
∧
x∈X

(A(x) → F (1x)(y)))

=
∧
y∈Y

∧
x∈X

(B(y) → (A(x) → F (1x)(y)))

=
∧
x∈X

(A(x) →
∧
y∈Y

(B(y) → Γx(y)))

=
∧
x∈X

(A(x) → G(B)(x)) = eLY (A,G(B)).

(2)(⇒) It follows from Theorem 3.1(2).
(⇐)

G(B)(x) =
∨

{C(x) | F (C) ≤ B}

=
∨

{C(x) |
∨

(C(x) ⊙ F (1x))(y) ≤ B(y)}

=
∧
y∈Y

(F (1x))(y) → B(y)) =
∧
y∈Y

(Γx(y) → B(y)).

eLY (F (A), B) =
∧
y∈Y

(F (
∨
x∈X

(A(x) ⊙ 1x)))(y) → B(y))

=
∧
y∈Y

(
∨
x∈X

(A(x) ⊙ F (1x))(y) → B(y))

=
∧
y∈Y

∧
x∈X

(A(x) → (F (1x))(y) → B(y)))

=
∧
x∈X

(A(x) →
∧
y∈Y

(Γx(y) → B(y)))

=
∧
x∈X

(A(x) → G(B)(x)) = eLX (A,G(B)).

(3)(⇒) It follows from Theorem 3.1(3).
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(⇐) Since

F (
∧
x∈X

(1x → C(x))) = F (
∧
x∈X

(C∗(x) → 1∗x) =
∨

(C∗(x) ⊙ F (1∗x)),

we define

G(B)(x) =
∧

{C(x) | F (C) ≤ B}

=
∧

{C(x) | F (
∧
x∈X

(1x → C(x))) ≤ B}

=
∨

{C(x) |
∨

(C∗(x) ⊙ F (1∗x)(y) ≤ B(y)}

=
∨

{C(x) | C∗(x) ≤
∧
y∈Y

(F (1∗x)(y) → B(y))}

=
∨
y∈Y

(∆x(y) ⊙B∗(y)).

eLY (F (A), B) =
∧
y∈Y

(F (
∧
x∈X

((eX)x → A(x))) → B(y))

=
∧
y∈Y

(
∨
x∈X

(A∗(x) ⊙ F (1∗x)(y)) → B(y))

=
∧
y∈Y

∧
x∈X

((B∗(y) ⊙ F (1∗x)(y)) → A(x))

=
∧
x∈X

(
∨
y∈Y

(B∗(y) ⊙ ∆x(y)) → A(x))

=
∧
x∈X

(G(B)(x) → A(x)) = eLX (G(B), A).

(4)(⇒) It follows from Theorem 3.1(4).

(⇐) Since

F (
∧
x∈X

(1x → C(x))) = F (
∧
x∈X

(C∗(x) → 1∗x) =
∧

(C∗(x) → F (1∗x)(y)),
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we define

G(B)(x) =
∧

{C(x) | F (C) ≥ B}

=
∧

{C(x) | F (
∧
x∈X

(1x → C(x))) ≥ B}

=
∨

{C(x) |
∧

(C∗(x) → F (1∗x)(y) ≥ B(y)}

=
∨

{C(x) | C∗(x) ≤
∧
y∈Y

(B(y) → F (1∗x)(y))}

=
∨
y∈Y

(∆∗
x(y) ⊙B(y))∗

eLY (B,F (A)) =
∧
y∈Y

(B(y) → F (
∧
x∈X

(A∗(x) → ((eX)−1
x )∗)))

=
∧
y∈Y

(B(y) →
∧
x∈X

(A∗(x) → F (1x)∗)(y)))

=
∧
y∈Y

(B(y) →
∧
x∈X

(F (1∗x)∗(y) → A)x)))

=
∧
y∈Y

(
∧
x∈X

(B(y) ⊙ F (1∗x)∗(y) → A(x)))

=
∧
y∈Y

∧
x∈X

((B(y) ⊙ F (1x)∗)∗(y) → A(x))

=
∧
x∈X

(
∨
y∈Y

(B(y) ⊙ ∆∗
x(y))∗ → A(x))

=
∧
x∈X

(G(B)(x) → A(x)) = eLX (G(B), A).

�

Example 3.4. Let X = {a, b, c} and Y = {x, y, z} be sets with

F1(1a)(x) = 1, F1(1a)(y) = 0.8, F1(1a)(z) = 0.5,

F1(1b)(x) = 0.5, F1(1b)(y) = 0.6, F1(1b)(z) = 0.9,

F1(1c)(x) = 0.3, F1(1c)(y) = 1, F1(1c)(z) = 0.4.
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F2(1∗a)(x) = 1, F2(1∗a)(y) = 0.8, F2(1∗a)(z) = 0.5,

F2(1∗b)(x) = 0.5, F2(1∗b)(y) = 0.6, F2(1∗b)(z) = 0.9,

F2(1∗c)(x) = 0.3, F2(1∗c)(y) = 1, F2(1∗c)(z) = 0.4.

Define a binary operation ⊙ (called  Lukasiewicz conjection) on L =
[0, 1] by

x⊙ y = max{0, x + y − 1}, x → y = min{1 − x + y, 1}.

(1) If F1(
∨

i∈Γ Ai) =
∧

i∈Γ F1(Ai) and F1(α ⊙ A) = α → F1(A),
then

F1(A)(x) = (A(a) → F1(1a)(x)) ∧ (A(b) → F1(1b)(x))

∧ (A(c) → F1(1c)(x))

= (A(a) → 1) ∧ (A(b) → 0.5) ∧ (A(c) → 0.3),

F1(A)(y) = (A(a) → 0.8) ∧ (A(b) → 0.6) ∧ (A(c) → 1),

F1(A)(z) = (A(a) → 0.5) ∧ (A(b) → 0.9) ∧ (A(c) → 0.4),

G1(B)(a) = (B(x) → F1(1a)(x)) ∧ (B(y) → F1(1a)(y))

∧ (B(z) → F1(1a)(z))

= (B(x) → 1) ∧ (B(y) → 0.8) ∧ (B(z) → 0.5),

G1(B)(b) = (B(x) → 0.5) ∧ (B(y) → 0.6) ∧ (B(z) → 0.9),

G1(B)(c) = (B(x) → 0.3) ∧ (B(y) → 1) ∧ (B(z) → 0.4).

Thus (eLX , F1, G1, eLY ) is a Galois connection.
(2) If F1(

∨
i∈Γ Ai) =

∨
i∈Γ F1(Ai) and F1(α⊙A) = α⊙F1(A), then

F1(A)(x) = (A(a) ⊙ F1(1a)(x)) ∨ (A(b) ⊙ F1(1b)(x))

∨ (A(c) ⊙ F1(1c)(x))

= (A(a) ⊙ 1) ∨ (A(b) ⊙ 0.5) ∨ (A(c) ⊙ 0.3),

F1(A)(y) = (A(a) ⊙ 0.8) ∨ (A(b) ⊙ 0.6) ∨ (A(c) ⊙ 1),

F1(A)(z) = (A(a) ⊙ 0.5) ∨ (A(b) ⊙ 0.9) ∨ (A(c) ⊙ 0.4),
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G1(B)(a) = (F1(1a)(x) → B(x)) ∧ (F1(1a)(y) → B(y))

∧ (F1(1a)(z) → B(z))

= (1 → B(x)) ∧ (0.8 → B(y)) ∧ (0.5 → B(z)),

G1(B)(b) = (0.5 → B(x)) ∧ (0.6 → B(y)) ∧ (0.9 → B(z)),

G1(B)(c) = (0.3 → B(x)) ∧ (1 → B(y)) ∧ (0.4 → B(z)).

Thus (eLX , F1, G1, eLY ) is a residuated connection.
(3) If F2(

∧
i∈Γ Ai) =

∨
i∈Γ F2(Ai) and F2(α → A) = α ⊙ F2(A),

then

F2(A)(x) = (A∗(a) ⊙ F2(1∗a)(x)) ∨ (A∗(b) ⊙ F2(1∗b)(x))

∨ (A∗(c) ⊙ F2(1∗c)(x))

= (A∗(a) ⊙ 1) ∨ (A∗(b) ⊙ 0.5) ∨ (A∗(c) ⊙ 0.3),

F2(A)(y) = (A∗(a) ⊙ 0.8) ∨ (A∗(b) ⊙ 0.6) ∨ (A∗(c) ⊙ 1),

F2(A)(z) = (A∗(a) ⊙ 0.5) ∨ (A∗(b) ⊙ 0.9) ∨ (A∗(c) ⊙ 0.4),

G2(B)(a) = (F2(1∗a)(x) ⊙B∗(x)) ∨ (F2(1∗a)(y) ⊙B∗(y))

∨ (F2(1∗a)(z) ⊙B∗(z))

= (1 ⊙B∗(x)) ∨ (0.8 ⊙B∗(y)) ∨ (0.5 ⊙B∗(z)),

G2(B)(b) = (0.5 ⊙B∗(x)) ∨ (0.6 ⊙B∗(y)) ∨ (0.9 ⊙B∗(z)),

G2(B)(c) = (0.3 ⊙B∗(x)) ∨ (1 ⊙B∗(y)) ∨ (0.4 ⊙B∗(z)).

Thus (eLX , F2, G2, eLY ) is a dual Galois connection
(4) If F2(

∧
i∈Γ Ai) =

∧
i∈Γ F2(Ai) and F2(α → A) = α → F2(A),

then

F2(A)(x) = (F2(1∗a)∗(x) → A(a)) ∧ (F2(1∗b)∗(x) → A(b))

∧ (F2(1∗c)(x) → A(c))

= (0 → A(a)) ∧ (0.5 → A(b)) ∧ (0.3 → A(c)),

F2(A)(y) = (0.2 → A(a)) ∧ (0.4 → A(b)) ∧ (0.5 → A(c)),

F2(A)(z) = (0.5 → A(a)) ∧ (0.1 → A(b)) ∧ (0.6 → A(c)),
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G2(B)(a) = (F2(1∗a)∗(x) ⊙B(x)) ∨ (F2(1∗a)∗(y) ⊙B(y))

∨ (F2(1∗a)∗(z) ⊙B(z))

= (0 ⊙B(x)) ∨ (0.2 ⊙B(y)) ∨ (0.5 ⊙B(z)),

G2(B)(b) = (0.5 ⊙B(x)) ∨ (0.4 ⊙B(y)) ∨ (0.1 ⊙B(z)),

G2(B)(c) = (0.7 ⊙B(x)) ∨ (0 ⊙B(y)) ∨ (0.6 ⊙B(z)).

Thus (eLX , F2, G2, eLY ) is a dual residuated connection.
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