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SUPERSTABILITY OF THE GENERALIZED PEXIDER

TYPE EXPONENTIAL EQUATION IN ABELIAN

GROUP

Gwang Hui Kim

Abstract. In this paper, we will prove the superstability of the
following generalized Pexider type exponential equation

f
(
x+ y

)m
= g(x)h(y),

where f, g, h : G → R are unknown mappings and m is a fixed
positive integer. Here G is an Abelian group (G,+), and R the
set of real numbers. Also we will extend the obtained results to
the Banach algebra. The obtained results are generalizations of P.
Gǎvruta’s result in 1994 and G. H. Kim’s results in 2011.

1. Introduction

The stability problem of the functional equation concerned the group
homomorphisms was arisen by Ulam [13] during a conference in the
university of Wisconsin in 1940. Next year, the problem was affirma-
tively answered in the case of additive mapping for Banach spaces by
Hyers [7], which is called the Hyers-Ulam stability. The result of Hy-
ers was very significantly generalized by Bourgin [3], which is covered
with functional variables in C∗-algebras. Unfortunately, since a large
portion of the proof have been omitted, his paper was too difficult in
researchers. Subsequently, Hyers’ result was detailed by Aoki [1] for
additive mappings and by Rassias [11] for linear mappings by consid-
ering an unbounded Cauchy difference. The paper by Th.M. Rassias
has provided a lot of influences in the development of what we now call
the generalized Hyers-Ulam stability or Hyers- Ulam-Rassias stability of
functional equations. J.M. Rassias [12] considered the Cauchy difference
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controlled by a product of different powers of norm. The above results
have been generalized by Forti [4] and Gǎvruta [5] who permitted the
Cauchy difference to become arbitrary unbounded. Páles, Volkmann
and Luce [10] also improved pre-results.

In 1979, Baker, Lawrence, and Zorzitto [2] investigated the supersta-
bility, which states that if f is a function from a Abelian group to R
satisfying

|f(x+ y)− f(x)f(y)| ≤ ε

for some fixed ε > 0, then either f is bounded or f satisfies the expo-
nential functional equation

(E) f(x+ y) = f(x)f(y).

Gǎvruta [6] proved the superstability of the Lobacevski equation

(L) f

(
x+ y

2

)2

= f(x)f(y)

under the condition bounded by a constant.
Kim ([8], [9]) improved Gǎvruta’s result under the condition bounded

by an unknown function.
Every solution of the functional equation (L) can be represented as

an exponential function f(x) := ex as follows:

f

(
x+ y

2

)2

=
(
e

x+y
2

)2

= exey = f(x)f(y).

Kim [9] was investigated the superstability of the Pexider type Lobacevski
equation

(PL) f

(
x+ y

2

)2

= g(x)h(y),

which also can be represented as follows :

f

(
x+ y

2

)2

=
(
αβe

x+y
2

)2

= (α2ex)(β2ey) = g(x)h(y).

Due to the above two functional equations (L) and (PL) and its ex-
amples, we can also consider the following exponential type functions:

f (x) = a
x
n , g(x) = bx =

(
a

m
n

)x
, h(x) = cmx =

(
a

1
n

)mx
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for x, a, b, c ∈ R, and m,n ∈ N. These functional equations arise the
generalized Pexider type exponential equation

f (x+ y)m =
(

n
√
ax+y

)m

=
(

n
√
ax
)m (

n
√
ay
)m

=
(
a

m
n

)x (
a

1
n

)my

= g(x)h(y),

which yields us the target functional equation. In here, by putting n =
m, two exponential functions g and h imply f , then the above equation
implies (E).

The aim of this paper is to prove the superstability of the following
generalized Pexider exponential equation

(PE) f (x+ y)m = g(x)h(y),

in Abelian group, where m is a positive integer.
Furthermore, Also we will extend the obtained results to the Banach

algebra. The obtained results are generalizations of P. Gǎvruta’s result
[6] in 1994 and G. H. Kim’s results ([8], [9]) in 2011.

In this paper, let (G,+) be an Abelian group, C the field of complex
numbers, R the field of real numbers, R+ the set of positive reals, ε a
nonnegative real constant, and m a positive integer. Let a : G → R+

be a function such that a(x) = ax (0 < a ∈ R). We assume that
f, g, h : G → C are nonzero and nonconstant functions, and that φ : G,
( or G×G) → R+ ∪ {0} be a function.

2. Stability of the generalized Pexider exponential equation
(PE)

We will investigate the solution and the superstability of the general-
ized Pexider type exponential equation (PE).

Theorem 1. Suppose that f, g, h : G → C satisfy the inequality

(2.1) |f(x+ y)m − g(x)h(y)| ≤ ε

for all x, y ∈ G and m is a positive integer.
Then, either there exist C1, C2, C3 > 0 such that

(2.2) |g(x)| ≤ C1, |h(x)| ≤ C2, |f(x)| ≤ C3

for all x ∈ G, or else each function g and h is represented by scalar times
of an exponential function as follows:

g(x) = g(0)a(x), h(x) = h(0)a(x),(2.3)

where a(x) is an exponential.
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In particular, if g(0) = 1 = h(0), then g and h satisfy (E) as same
exponential function.

Proof. Replacing x by y in (2.1), and then subtracting them and using
triangle inequality we have

(2.4) |g(x)h(y)− g(y)h(x)| ≤ 2ε ∀x, y ∈ G.

It follows from the inequality (2.4) that there exist constants c1, c2, d1, d2 ≥
0 such that

|g(x)| ≤ c1|h(x)|+ d1(2.5)

|h(x)| ≤ c2|g(x)|+ d2(2.6)

for all x ∈ G. It follows from (2.5) and (2.6) that g is bounded if and
only if h is bounded. If either g or h is bounded, then we obtain (2.2)
from (2.1).

Now if h(x) is unbounded, then we can choose (yn) ∈ G so that
|h(yn)| → ∞ as n → ∞. Letting y = yn in (2.1), dividing by |h(yn)|,
and letting n → ∞, we have

(2.7) g(x) = lim
n→∞

f (x+ yn)
m

h(yn)
, ∀x ∈ G.

It follows from (2.1) and (2.7) that

g(x+ y)g(z) = lim
n→∞

f (x+ y + yn)
m g(z)

h(yn)
= lim

n→∞

g(x)h(y + yn)g(z) +R1

h(yn)

= lim
n→∞

g(x)f (y + z + yn)
m +R1 +R2

h(yn)
= g(x)g(y + z) + lim

n→∞

R1 +R2

h(yn)
,

where |R1| ≤ ε|g(z)|, |R2| ≤ ε|g(x)|, which implies

(2.8) g(x+ y)g(z) = g(x)g(y + z)

for all x, y, z ∈ G.
Letting z = 0 in (2.8), we get

(2.9) g(x+ y)g(0) = g(x)g(y)

for all x, y ∈ G, which implies that

(2.10) g(x) = g(0)a1(x),

where g(0) ̸= 0 (since g(x) is a nonzero and nonconstant function) and
a1 is an exponential.
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Exchanging the roles of g and h, by the same proceeding, we have

(2.11) h(x) = h(0)a2(x),

where h(0) ̸= 0 and a2 is an exponential.
Putting (2.10) and (2.11) in (2.4), it implies

(2.12) |a1(x)a2(y)− a1(y)a2(x)| ≤
2ε

|g(0)h(0)|
= M ∀x, y ∈ G.

Let x = 0 in (2.12). Since a1, a2 are exponentials, this implies that
|a1(y)− a2(y)| ≤ M for all y ∈ G. Hence, from this and (2.12), we have

a1(y)|a1(x)− a2(x)| = |a1(x)[a1(y)− a2(y)] + a1(x)a2(y)− a1(y)a2(x)|
≤ |a1(x)|M +M,

which is

(2.13) |a1(x)− a2(x)| ≤
a1(x)M +M

|a1(y)|
,

for all x, y ∈ G.
Since g is unbounded from (2.2), we can choose (yn) ∈ G so that

g(yn) = g(0)a1(yn) → ∞ as n → ∞. Letting y = yn in (2.13), we get
that a1(x) = a2(x). Let it be denoted by a(x). Then (2.10) and (2.11)
state nothing but (2.3).

Finally, if g(0) = 1 and h(0) = 1 in (2.3), then it is immediate that g
and h in (2.3) are same exponential function.

Corollary 1. Suppose that f, g : G → C satisfy the inequality

|f(x+ y)m − g(x)g(y)| ≤ ε

for all x, y ∈ G.
Then either g is bounded or g is represented by

g(x) = g(0)a(x),

where a(x) is an exponential. In case g(0) = 1, g satisfies (E).

Corollary 2. Suppose that f, g : G → C satisfy the inequality

|f(x+ y)m − g(x)f(y)| ≤ ε

for all x, y ∈ G.
Then either g(or f) is bounded or g and f are represented respectively

by
g(x) = g(0)a(x) and f(x) = f(0)a(x),
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where a(x) is an exponential. In cases g(0) = 1 = f(0), g and f satisfy
(E).

Corollary 3. Suppose that f : G → C satisfy the inequality

|f(x+ y)m − f(x)f(y)| ≤ ε

for all x, y ∈ G.
Then either f is bounded or f is represented by

f(x) = f(0)a(x),

where a(x) is an exponential. In case f(0) = 1, f satisfies (E).

In Corollary 3, it is founded in papers ([6], [8]) that f satisfies (E).

Theorem 2. Suppose that f, g, h : G → C satisfy the inequality

(2.14) |f(x+ y)m − g(x)h(y)| ≤ φ(x)

for all x, y ∈ G.
Then either h is bounded or function g is represented by scalar times

of an exponential function as follows:

g(x) = g(0)a(x),

where a(x) is an exponential. In case g(0) = 1, g satisfies (E).

Proof. Suppose that h(x) is unbounded. Then we can choose (yn) ∈ G
such that |h(yn)| → ∞ as n → ∞. Letting y = yn in (2.14), dividing by
|h(yn)|, and letting n → ∞, we have

(2.15) g(x) = lim
n→∞

f(x+ yn)

h(yn)
∀x ∈ G.

Using (2.14) and (2.15), let us runs the same as the proof of Theorem
1, then we arrive the our required results via (2.8), (2.9), and (2.10) in
Theorem 1.

Namely, g is represented by

g(x) = g(0)a(x),

where a(x) is an exponential. In case g(0) = 1, g satisfies (E).

Theorem 3. Suppose that f, g, h : G → C satisfy the inequality

(2.16) |f(x+ y)m − g(x)h(y)| ≤ φ(y)

for all x, y ∈ G.
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Then either g is bounded or function h is represented by

h(x) = h(0)a(x),

where a(x) is an exponential. In case h(0) = 1, h satisfies (E).

Proof. The proof runs along a slight change in the step-by-step pro-
cedure in Theorem 1 as Theorem 2.

The following result follows immediately from the above Theorem 2
and Theorem 3 .

Theorem 4. Let φ : G×G → R+ ∪ {0} be a function. Assume that
φ(x, y) is bounded as a function of y for each x ∈ G or as a function of
x for each y ∈ G, and that f, g, h : G → C satisfy the inequality

(2.17) ∥f (x+ y)m − g(x)h(y)∥ ≤ φ(x, y)

for all x, y ∈ G, and g(0) = 1 = h(0).
Then, (i) either h is bounded or g is represented by g(x) = g(0)a(x),

where a(x) is an exponential. In case g(0) = 1, g satisfies (E).
(ii) either g is bounded or function h is represented by h(x) = h(0)a(x),

where a(x) is an exponential. In case = 1, h satisfies (E).

Proof. By assumption that φ(x, y) is bounded, we can choose (xn)
and (yn) ∈ G such that |g(xn)| and |h(yn)| → ∞ as n → ∞. Its imply
from (2.12)

lim
n→∞

φ(x, yn)

h(yn)
= 0 or lim

n→∞

φ(xn, y)

h(xn)
= 0 ∀x, y ∈ G.

Hence, the results hold from Theorem 2 and Theorem 3.

Remark 1. (i) As Corollaries 1 ∼ 3 of Theorem 1, by replacing g or
h by f , respectively, in Theorem 2, Theorem 3 and Theorem 5, we can
obtain a number of corollaries for the following functional equations:

f(x+ y)m = g(x)g(y)

f(x+ y)m = f(x)g(y)(2.18)

f(x+ y)m = f(x)f(y),

in which the results of the equations replaced by f(x+y
2
)2 to f(x + y)m

in (2.18) are found in papers ([8], [9]).
(ii) For the results obtained from each equation of the above (i), by

applying φ(y) = φ(x) = ε, we can obtain the same number of corollaries.
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3. Extension to Banach Algebra

All obtained results can be extended to the stability on the Banach
algebras. We will illustrate only for the case of Theorem 1 among them.

Theorem 5. Let (E, ∥ · ∥) be a semisimple commutative Banach
algebra with unit I. Assume that f, g, h : G → E satisfy the inequality

(3.1) ∥f(x+ y)m − g(x)h(y)∥ ≤ ε

for all x, y ∈ G and m is a positive integer.

Then, for an arbitrary linear multiplicative functional x∗ ∈ E∗,
either there exist C1, C2, C3 > 0 such that

(3.2) |(x∗ ◦ g)(x)| ≤ C1, |(x∗ ◦ h)(x)| ≤ C2, |(x∗ ◦ f)(x)| ≤ C3

for all x ∈ G, or else each function g and h is represented by scalar times
of an exponential function as follows:

g(x) = g(0)a(x), h(x) = h(0)a(x),(3.3)

where a(x) is an exponential.

In particular, if g(0) = I = h(0), then g and h satisfy (E), respec-
tively, as same exponential function.

Proof. Assume that (3.1) holds, and fix arbitrarily a linear multiplica-
tive functional x∗ ∈ E∗. As well known we may assume without loss of
generality that ∥x∗∥ = 1 whence, for every x, y ∈ G, we have

ε ≥ ∥f(x+ y)m − g(x)h(y)∥
= sup

∥y∗∥=1

|y∗ (f(x+ y)m − g(x)h(y))|

≥
∣∣∣∣x∗

(
f

(
x+ y

2

))
− x∗ (g(x))x∗ (h(y))

∣∣∣∣ ,
which states that the superpositions x∗ ◦ f , x∗ ◦ g, and x∗ ◦ h satisfy the
inequality (2.1) of Theorem 1. Due to same processing as from (2.4) to
(2.6), for any fixed arbitrary linear multiplicative functional x∗ ∈ E∗,
indeed, we have

(3.4) |(x∗ ◦ g)(x)(x∗ ◦ h)(y)− (x∗ ◦ g)(y)(x∗ ◦ h)(x)| ≤ 2ε ∀x, y ∈ G.
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It follows from the inequality (3.4) that there exist constants c1, c2, d1, d2 ≥
0 such that

|(x∗ ◦ g)(x)| ≤ c1|(x∗ ◦ h)(x)|+ d1(3.5)

|(x∗ ◦ h)(x)| ≤ c2|(x∗ ◦ g)(x)|+ d2(3.6)

for all x ∈ G. Since x∗ is an arbitrarily linear multiplicative functional, it
follows from (3.5) and (3.6) that g is bounded if and only if h is bounded.
Assume that one of g or h is bounded. From (3.1) we arrive at (3.2).

By the assumption (3.2), an appeal to Theorem 1 shows that

(x∗ ◦ g)(x) = (x∗ ◦ g(0)a1) (x),(3.7)

(x∗ ◦ h)(x) = (x∗ ◦ h(0)a2) (x),(3.8)

where a1, a2 : G → R are exponentials. In other words, bearing the linear
multiplicativity of x∗ in mind, for all x ∈ G, each difference derived from
(3.7) and (3.8)

D(3.7)(x) := g(x)− (g(0)a1)(x),

D(3.8)(x) := h(x)− (h(0)a2)(x),

falls into the kernel of x∗. Therefore, in view of the unrestricted choice
of x∗, we infer that

D(3.7)(x), D(3.8)(x) ∈
∩

{kerx∗ : x∗ is a multiplicative member of E∗}

for all x ∈ G. Since the algebra E has been assumed to be semisimple,
the last term of the previous formula coincides with the singleton {0},
i.e.

(3.9) g(x)− g(0)a1(x) = 0, h(x)− h(0)a2(x) = 0 x ∈ G.

Putting (3.9) in (3.4), following the same proceeding as after (2.11)
in Theorem 1, then we arrive that a1(x) = a2(x). Indeed, we have
(3.10)
|(x∗ ◦ g(0)a1)(x)(x∗ ◦ h(0)a2)(y)− (x∗ ◦ g(0)a1)(y)(x∗ ◦ h(0)a2)(x)| ≤ 2ε

for all x, y ∈ G. This implies that
(3.11)

|(x∗◦a1)(x)(x∗◦a2)(y)−(x∗◦a1)(y)(x∗◦a2)(x)| ≤
2ε

|g(0)h(0)|
= M ∀x, y ∈ G.
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Letting x = 0 in (3.11), it implies |(x∗◦a2)(y)−(x∗◦a1)(y)| ≤ M
|x∗(1)| =

M ′ for all y ∈ G. Thus, from this and (3.11), we have

|(x∗ ◦ a1)(y)||(x∗ ◦ a1)(x)− (x∗ ◦ a2)(x)|
= |(x∗ ◦ a1)(x)[(x∗ ◦ a1)(y)− (x∗ ◦ a2)(y)]
+ (x∗ ◦ a1)(x)(x∗ ◦ a2)(y)− (x∗ ◦ a1)(y)(x∗ ◦ a2)(x)|

≤ |(x∗ ◦ a1)(x)|M ′ +M,

which is

(3.12) |(x∗ ◦ a1)(x)− (x∗ ◦ a2)(x)| ≤
|(x∗ ◦ a1)(x)|M ′ +M

|(x∗ ◦ a1)(y)|
,

for all x, y ∈ G.
Since x∗ ◦ g is unbounded from (3.2), we can choose (yn) ∈ G so that

|(x∗ ◦ g)(yn)| = |g(0)(x∗ ◦ a1)(yn)| → ∞ as n → ∞. Letting y = yn in
(3.12), which arrive that

(3.13) (x∗ ◦ a1)(x) = (x∗ ◦ a2)(x).
Using the same logic as before, i.e., bearing the linear multiplicativity

of x∗ in mind, the difference derived from (3.13), D(3.13)(x) := a1(x)−
a2(x) falls into the kernel of x∗. Then, the semisimplicity of E implies
that a1(x) = a2(x) = a(x), which arrive the claimed (3.3).

In cases g(0) = I = h(0), since a(x) is exponential, it is immediate
from (3.3) that each function g and h satisfies (E).

Remark 2. All results of Section 2 containing Remark 1 can be
extend to the Banach algebra as Theorem 5.
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[10] Zs. Páles, P. Volkmann and R.D. Luce, Hyers-Ulam stability of functional equa-
tions with a square-symmetric operation, Proc. Natl. Acad. Sci. USA 95(1998),
12772–12775.

[11] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.
Amer. Math. Soc. 72 (1978), 297–300.

[12] J.M. Rassias, On the Approximation of Approximately Linear Mappings by Lin-
ear Mappings, Journal of Functiopnal Analysis 46 (1982), 126–130.

[13] S.M. Ulam, “Problems in Modern Mathematics” Chap. VI, Science editions,
Wiley, New York, (1964).

Department of Mathematics
Kangnam University
Yongin, Gyeonggi 446-702
Republic of Korea
E-mail : ghkim@kangnam.ac.kr


