APPLICATIONS OF LINKING INEQUALITIES TO AN ASYMMETRIC BEAM EQUATION

Q-Heung Choi and Tacksun Jung*

Abstract

We prove that an asymmetric beam equation has at least two solutions, one of which is a positive solution. To prove the existence of the other solution, we use linking inequalities.

1. Introduction

We investigate the existence of multiple solutions of the nonlinear beam equation in an interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$
\begin{array}{r}
u_{t t}+u_{x x x x}+b u^{+}-\left|u^{-}\right|^{p-1}=f(x, t) \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0 \tag{2}
\end{array}
$$

$$
\begin{equation*}
u \text { is } \pi \text { - periodic in } t \text { and even in } x \text { and } t, \tag{3}
\end{equation*}
$$

where the nonlinearity $-\left(b u^{+}\right)$crosses eigenvalues and $u^{+}=\max \{u, 0\}$, $u^{-}=\max \{-u, 0\}$. Here we suppose that $p>2$ and $f=s \phi_{00}+$ $\alpha h(x, t)(s>0), h$ is bounded. This equation represents a bending beam supported by cables under a load f. The nonlinearity u^{+}models the fact that cables resist expansion but do not resist compression.

Let L be the differential operator, $L u=u_{t t}+u_{x x x x}$. Then the eigenvalue problem for $u(x, t)$

$$
L u=\lambda u \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R
$$

with (2) and (3), has infinitely many eigenvalues

$$
\lambda_{m n}=(2 n+1)^{4}-4 m^{2} \quad(m, n=0,1,2, \cdots)
$$

Received April 29, 2012. Revised May 31, 2012. Accepted June 5, 2012.
2010 Mathematics Subject Classification: 35Q40, 35Q80.
Key words and phrases: critical point, linking inequality, multiple solutions.
This work was supported by Inha University Research Grant.
*Corresponding author.
and corresponding eigenfunctions $\phi_{m n}(m, n \geq 0)$ given by

$$
\phi_{m n}=\cos 2 m t \cos (2 n+1) x
$$

We note that all eigenvalues in the interval $(-19,45)$ are given by

$$
\lambda_{20}=-15<\lambda_{10}=-3<\lambda_{00}=1<\lambda_{41}=17
$$

Let Ω be the square $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and H the Hilbert space defined by

$$
H=\left\{u \in L^{2}(\Omega): u \text { is even in } x \text { and } t\right\} .
$$

Then the set of eigenfunctions $\left\{\phi_{m n}\right\}$ is an orthonormal base in H. Hence equation (1) with (2) and (3) is equivalent to

$$
\begin{equation*}
L u+b u^{+}=f \text { in } H . \tag{4}
\end{equation*}
$$

In [6], the authors showed by degree theory that equation (4) with constant load $1+\epsilon h$ (h is bounded) has at least two solutions. In [1], the authors showed by a variational reduction method that equation (4) with constant load $1+\epsilon h$ (h is bounded) has at least three solutions when condition (3) is replaced by
u is π - periodic in t and even in x.
In [5], the author showed by linking method and category theory that the following asymmetric beam equation has multiple nontrivial solutions

$$
\begin{equation*}
L u+b u^{+}=\left|u^{+}\right|^{p-1}-\left|u^{-}\right|^{q-1} \text { in } H . \tag{6}
\end{equation*}
$$

McKenna and Walter [7] proved that if $3<b<15$ then at least two π periodic solutions exist, one of which is large in amplitude. The existence of at least three solutions was later proved by Choi, Jung and McKenna [2] using a variational reduction method. Humphreys [4] proved that there exists an $\varepsilon>0$ such that when $15<b<15+\varepsilon$ at least four periodic solutions exist. Choi and Jung [1] suppose that $3<b<15$ and f is generated by eigenfunctions. Since Micheletti and Saccon [8] applied the limit relative category to studying multiple nontrivial solutions for a floating beam.

The main result of this paper is the following.
THEOREM 1.1. Let $\Lambda_{i}^{-}<-b(b>0)$ and $f=s e_{1}^{+}(s>0)$. Let u_{p} be the positive solution of (1). Then problem (1) has at least two solutions, one of which is a positive solution.

In this paper, we use a variational approach and look for critical points of a suitable functional I on a Hilbert space H. In Section 2, we find a suitable functional I on a Hilbert space H and prove the suitable version of the Palais-Smale condition for the topological method. In Section 3, we study the geometry of the sub-levels of I and find two linking type inequalities, relative to two different decompositions of the space H.

2. The Palais Smale condition

To begin with, we consider the associated eigenvalue problem

$$
\begin{gather*}
L u=\lambda u \quad \text { in }\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R \\
u\left(\pm \frac{\pi}{2}, t\right)=u_{x x}\left(\pm \frac{\pi}{2}, t\right)=0 \tag{7}\\
u(x, t)=u(-x, t)=u(x,-t)=u(x, t+\pi)
\end{gather*}
$$

A simple computation shows that equation (3) has infinitely many eigenvalues $\lambda_{m n}$ and the corresponding eigenfunctions $\phi_{m n}$ given by

$$
\begin{gathered}
\lambda_{m n}=(2 n+1)^{4}-4 m^{2} \\
\phi_{m n}(x, t)=\cos 2 m t \cos (2 n+1) x \quad(m, n=0,1,2, \cdots) .
\end{gathered}
$$

Let Ω be the square $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and H the Hilbert space defined by

$$
\begin{equation*}
H=\left\{u \in L^{2}(\Omega) \mid u \text { is even in } x \text { and } t\right\} . \tag{8}
\end{equation*}
$$

Then the set $\left\{\phi_{m n} \mid m, n=0,1,2, \cdots\right\}$ is an orthogonal base of H and H consists of the functions

$$
\begin{equation*}
u(x, t)=\sum_{m, n=0}^{\infty} a_{m n} \phi_{m n}(x, t) \tag{9}
\end{equation*}
$$

with the norm given by

$$
\begin{equation*}
\|u\|^{2}=\sum_{m, n=0}^{\infty} a_{m n}^{2} . \tag{10}
\end{equation*}
$$

We denote by $\left(\Lambda_{i}^{-}\right)_{i \geq 1}$ the sequence of the negative eigenvalues of equation (3), by $\left(\Lambda_{i}^{+}\right)_{i \geq 1}$ the sequence of the positive ones, so that

$$
\cdots<\Lambda_{1}^{-}=-3<\Lambda_{1}^{+}=1<\Lambda_{2}^{+}=17<\cdots .
$$

We consider an orthonormal system of eigenfunctions $\left\{e_{i}^{-}, e_{i}^{+}, i \geq 1\right\}$ associated with the eigenvalues $\left\{\Lambda_{i}^{-}, \Lambda_{i}^{+}, i \geq 1\right\}$.

The following theorem is the uniqueness result.
Proposition 2.1. Let $b<-\Lambda_{1}^{-}$and $p>2$. Then the equation

$$
\begin{equation*}
L u+b u^{+}-\left|u^{-}\right|^{p-1}=0 \text { in } H \tag{11}
\end{equation*}
$$

has only the trivial solution.
Proof. We rewrite the above equation as

$$
\begin{aligned}
L u-\Lambda_{1}^{+} u & =-\Lambda_{1}^{+} u-b u^{+}+\left|u^{-}\right|^{p-1} \\
& =-\Lambda_{1}^{+} u^{+}-b u^{+}+\left|u^{-}\right|^{p-1}+\Lambda_{1} u^{-}+\left|u^{-}\right|^{p-1} .
\end{aligned}
$$

Multiplying across by e_{1}^{+}and integrating over Ω,

$$
\begin{aligned}
0 & =<\left[L-\Lambda_{1}^{+}\right] u, e_{1}^{+}> \\
& =\int_{\Omega}\left(-\Lambda_{1}^{+} u^{+}-b u^{+}+\left|u^{-}\right|^{p-1}+\Lambda_{1} u^{-}+\left|u^{-}\right|^{p-1}\right) e_{1}^{+} d x d t \geq 0,
\end{aligned}
$$

since the condition $b<-\Lambda_{1}^{-}$imply that $-\Lambda_{1}^{+} u^{+}-b u^{+}+\left|u^{-}\right|^{p-1}+\Lambda_{1} u^{-}+$ $\left|u^{-}\right|^{p-1} \geq 0$ for all real valued functions u and $e_{1}^{+}(x)>0$ for all $x \in \Omega$. Therefore the only possibility to hold (1) is that $u \equiv 0$.

Theorem 2.2. Let $b<-\Lambda_{1}^{-}, s>0$ and $\|h\|=1$. Then there exists $\alpha_{0}>0$ such that for $\alpha<\alpha_{0}$ the equation

$$
\begin{equation*}
L u+b u^{+}+\left|u^{-}\right|^{p-1}=s e_{1}^{+}+\alpha h(x, t) \text { in } H \tag{12}
\end{equation*}
$$

has a positive solution.
Proof. Since $b<-\Lambda_{1}^{-}<-\Lambda_{1}^{+}, b+\Lambda_{1}^{+}>0$ Thus the equation

$$
L u+b u^{+}=s e_{1}^{+} \text {in } H
$$

has a positive solution $u_{p}=\frac{s}{b+\Lambda_{1}^{+}} e_{1}^{+}$, which is a positive solution of the equation

$$
L u+b u^{+}+\left|u^{-}\right|^{p-1}=s e_{1}^{+} \text {in } H
$$

Therefore there exists $\alpha_{0}>0$ such that for $\alpha<\alpha_{0}$ equation (1) has a positive solution.

We set
$H^{+}=$closure of span\{eigenfunctions with eigenvalue $\left.\geq 0\right\}$,
$H^{-}=$closure of span\{eigenfunctions with eigenvalue $\left.\leq 0\right\}$.
We define the linear projections $P^{-}: H \rightarrow H^{-}, P^{+}: H \rightarrow H^{+}$.

We also introduce two linear operators $R: H \rightarrow H^{+}, S: H \rightarrow H^{-}$by

$$
S(u)=\sum_{i=1}^{\infty} \frac{a_{i}^{-} e_{i}^{-}}{\sqrt{-\Lambda_{i}^{-}}}, R(u)=\sum_{i=1}^{\infty} \frac{a_{i}^{+} e_{i}^{+}}{\sqrt{\Lambda_{i}^{+}}}
$$

if

$$
u=\sum_{i=1}^{\infty} a_{i}^{-} e_{i}^{-}+\sum_{i=1}^{\infty} a_{i}^{+} e_{i}^{+} .
$$

It is clear that S and R are compact and self adjoint on H.
Definition 2.3. Let $I_{b}: H \rightarrow R$ be defined by

$$
I_{b}(u)=\frac{1}{2}\left\|P^{+} u\right\|^{2}-\frac{1}{2}\left\|P^{-} u\right\|^{2}+\frac{b}{2}\left\|[A u]^{+}\right\|^{2}-\int_{\Omega} G(A u) d x d t
$$

where $A=R+S$ and $G(s)=\int_{0}^{s} g(x, t, \tau) d \tau, g(x, t, \tau)=s e_{1}^{+}-\left|\tau^{-}\right|^{p-1}$.
It is straightforward that

$$
\nabla I_{b}(u)=P^{+} u-P^{-} u+b A(A u)^{+}-A g(A u)
$$

Following the idea of Hofer (see [3]) one can show that
Proposition 2.4. $I_{b} \in C^{1,1}(H, R)$. Moreover $\nabla I_{b}(u)=0$ if and only if $w=(R+S)(u)$ is a weak solution of (P), that is,

$$
\int_{\Omega}\left(w\left(v_{t t}+v_{x x x x}\right)+b[w]^{+} v\right) d x d t=\int_{\Omega} g(w) v d x d t
$$

for all smooth $v \in H$.
In this section, we suppose $b>0$. Under this assumption, we have a concern with multiplicity of solutions of equation (1). Here we suppose that f is defined by equation (2).

In the following, we consider the following sequence of subspaces of $L^{2}\left(R^{N}\right)$:

$$
H_{n}=\left(\oplus_{i=1}^{n} H_{\Lambda_{i}^{-}}\right) \oplus\left(\oplus_{i=1}^{n} H_{\Lambda_{i}^{+}}\right)
$$

where H_{Λ} is the eigenspace associated to Λ.
Lemma 2.5. The functional I_{b} satisfies (P.S. $)_{\gamma}^{*}$ condition, with respect to $\left(H_{n}\right)$, for all γ.

For the proof we refer [2], [5].

3. Linking theory and main result

Fixed Λ_{i}^{-}and $\Lambda_{i}^{-}<-b<\Lambda_{i-1}^{-}$. We prove the Theorem via a linking argument.

First of all, we introduce a suitable splitting of the space H. Let

$$
Z_{1}=\oplus_{j=i+1}^{\infty} H_{\Lambda_{j}^{-}}, Z_{2}=H_{\Lambda_{i}^{-}}, Z_{3}=\oplus_{j=1}^{i-1} H_{\Lambda_{j}^{-}} \oplus H^{+}
$$

Lemma 3.1. There exists R such that $\sup _{v \in Z_{1} \oplus Z_{2},\|v\|=R} I_{b}(v) \leq 0$.
Proof. If $v \in Z_{1} \oplus Z_{2}$ then

$$
I_{b}(v)=-\frac{1}{2}\|v\|^{2}+\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\int_{\Omega} G(S v) d x d t
$$

Since

$$
\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\int_{\Omega} G(S v) d x=\int_{\Omega} \frac{b}{2}\left([S v]^{+}\right)^{2}-\frac{1}{p}\left([S v]^{-}\right)^{p} d x d t
$$

there exists R such that $-\frac{1}{4}\|v\|^{2}+\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\int_{\Omega} G(S v) d x \leq 0$ for all $\|v\|=R$. Hence

$$
I_{b}(v) \leq-\frac{1}{4}\|v\|^{2} \leq 0
$$

Lemma 3.2. There exists ρ such that $\inf _{u \in Z_{2} \oplus Z_{3},\|u\|=\rho} I_{b}(u)>0$.
For the proof we refer [5].
Definition 3.3. Let H be an Hilbert space, $Y \subset H, \rho>0$ and $e \in H \backslash Y, e \neq 0$. Set:

$$
\begin{aligned}
B_{\rho}(Y) & =\{x \in Y \mid\|x\| \leq \rho\}, \\
S_{\rho}(Y) & =\{x \in Y \mid\|x\|=\rho\}, \\
\triangle_{\rho}(e, Y) & =\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\| \leq \rho\}, \\
\Sigma_{\rho}(e, Y) & =\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|=\rho\} \cup\{v \mid v \in Y,\|v\| \leq \rho\} .
\end{aligned}
$$

Theorem 3.4. Let $\Lambda_{i}^{-}<-b(b>0)$ and $f=s e_{1}^{+}(s>0)$. Let u_{p} be the positive solution of (1). Then problem (1) has at least two solutions, one of which is a positive solution.

Proof. Let $e \in Z_{2}$. By Lemma 3.1 and Lemma 3.2, for a suitable large R and a suitable small ρ, we have the linking inequality

$$
\begin{equation*}
\sup I_{b}\left(\Sigma_{R}\left(e, Z_{1}\right)\right)<\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right) \tag{13}
\end{equation*}
$$

Moreover (P.S. $)_{\gamma}^{*}$ holds. By standard linking arguments, it follows that there exists a critical point u for I_{b} with $\alpha \leq I_{b}(u) \leq \beta$, where $\alpha=$ $\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right)$ and $\beta=\sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right)$. Since $\alpha>0$ and $I_{b}\left(u_{p}\right)=$ $0, u \neq u_{p}$. Therefore then problem (1) has at least two solutions, one of which is a positive solution.

References

[1] Q.H. Choi, T.S Jung, A nonlinear suspension bridge equation with nonconstant load, Nonlinear Anal. 35 (1999), 649-668.
[2] Q.H. Choi, T. Jung, P.J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, Appl. Anal. 50 (1993), 71-90.
[3] H. Hofer, On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275 (1983), 185-214.
[4] L. Humphreys, Numerical and theoretical results on large amplitude periodic solutions of a suspension bridge equation, ph.D. thesis, University of Connecticut (1994).
[5] S. Li, A. Squlkin, Periodic solutions of an asymptotically linear wave equation, Nonlinear Anal. 1 (1993), 211-230.
[6] J.Q. Liu, Free vibrations for an asymmetric beam equation, Nonlinear Anal. 51 (2002), 487-497.
[7] P.J. McKenna, W. Walter, Nonlinear Oscillations in a Suspension Bridge, Arch. Ration. Mech. Anal. 98 (1987), 167-177.
[8] A.M. Micheletti, C. Saccon, Multiple nontrivial solutions for a floating beam via critical point theory, J. Differential Equations, 170 (2001), 157-179.

Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr

