CLASSIFICATION OF TWO-REGULAR DIGRAPHS WITH MAXIMUM DIAMETER

Byeong Moon Kim, Byung Chul Song* and Woonjae Hwang

Abstract

The Klee-Quaife problem is finding the minimum order $\mu(d, c, v)$ of the (d, c, v) graph, which is a c-vertex connected v-regular graph with diameter d. Many authors contributed finding $\mu(d, c, v)$ and they also enumerated and classified the graphs in several cases. This problem is naturally extended to the case of digraphs. So we are interested in the extended Klee-Quaife problem. In this paper, we deal with an equivalent problem, finding the maximum diameter of digraphs with given order, focused on 2-regular case. We show that the maximum diameter of strongly connected 2 -regular digraphs with order n is $n-3$, and classify the digraphs which have diameter $n-3$. All 15 nonisomorphic extremal digraphs are listed.

1. Introduction

Let G be a connected graph. G is c-vertex connected if the graph obtained by deleting arbitrary $c-1$ vertices from G remains connected. G is v-regular if each vertex of G is adjacent to exactly v vertices. A (d, c, v) graph (resp. $\langle d, c, v\rangle$ graph) is a c-vertex connected v-regular (resp. minimum degree v) graph with diameter d. The number $\mu(d, c, v)$ (resp. $\mu\langle d, c, v\rangle$) is the minimum order of the (d, c, v) (resp. $\langle d, c, v\rangle$) graphs and a minimum (d, c, v) graph is a (d, c, v) graph on $\mu(d, c, v)$ vertices.

In 1960's, there have been some early results which are equivalent to computing $\mu(d, c, v)$ and $\mu\langle d, c, v\rangle$ for special cases [4, 6, 10]. In 1976,

[^0]concerning with armed connection network, Klee and Quaife [8] raised a problem of finding $\mu(d, c, v)$ and $\mu\langle d, c, v\rangle$. In the same paper, $\mu\langle d, c, v\rangle$ was computed completely. For $\mu(d, c, v)$, there are some partial results and it was lastly computed in 1989 for all d, c, v [3].

Classifying and enumerating all minimum (d, c, v) graphs is a more complicated problem. This problem was solved only in two cases. The first case is $v=3$ and $c=1,2$ done by Klee and Quaife [9] in 1977. The second case is $v=c=3$ and d is odd. This was achieved by Klee [7] in 1980. It is also notable Mayers [11] found a method to construct all the ($d, 3,3$) graphs for all d in 1980, whereas he couldn't enumerate all $(d, 3,3)$ graphs. Bhattacharya found a method to construct some minimum (d, n, n) graphs in 1985 [1]. But his method didn't cover all minimum (d, n, n) graphs.

Now we consider the corresponding problem for digraph $D=(V, A)$. A digraph D is strongly connected if for each pair of vertices x, y of D there is a directed walk from x to y. The ingegree $\delta^{+}(x)$ (respectively, the outdegree $\delta^{-}(x)$) of a vertex x in D is the number of vertices y in D such that $(y, x) \in A$ (respectively, $(x, y) \in A)$. A digraph D is eulerian if $\delta^{+}(x)=\delta^{-}(x)$ for each vertex x in D. D is oriented if there is no pair of vertices x, y in D such that $(x, y) \in A$ and $(y, x) \in A$. The (d, c, δ) digraphs and $\langle d, c, \delta\rangle$ eulerian digraphs are defined similarly as the case of graphs. Finding minimum order of (d, c, δ) digraphs and $\langle d, c, \delta\rangle$ eulerian digraphs is equivalent to determining maximum diameter d such that there is (d, c, v) and $\langle d, c, v\rangle$ eulerian diagraphs on μ vertices, respectively. In [5], Knyazev proved that if D is an eulerian oriented digraph on n vertices, then $\frac{4 n}{2 \delta+1}-4 \leq \operatorname{diam}(D) \leq \frac{5}{2 \delta+n} n$. Dankelmann [2] improved the upper bound of $\operatorname{diam}(D)$ to $\frac{4}{2 \delta+1} n+2$. Their results imply that the minimum order μ of an eulerian oriented $\langle d, 1, \delta\rangle$ digraph satisfies $\frac{(2 \delta+1)(d-2)}{4} \leq \mu \leq \frac{(2 \delta+1)(d+4)}{4}$.

In this paper, we show that the maximum diameter of strongly connected 2 -regular digraphs on n vertices is $n-3$ when $n \geq 9$. As a consequence we have the maximum number of vertices in a strongly connected oriented eulerian $(d, 1,2)$ digraph is $d+3$ when $d \geq 6$. Moreover, in this case we classify all 15 digraphs of diameter $n-3$.

2. Main theorems

Let $D=(V, A)$ be a strongly connected digraph on n vertices. Assume that D is 2-regular. For a vertex v in D, we define $A^{+}(v)=\{w \in$ $V \mid(v, w) \in A\}$ and $A^{-}(v)=\{w \in V \mid(w, v) \in A\}$. We also define $v \xrightarrow{k} w$ for each pair of vertices v, w in D if there is a walk of length k from v to w. We use $v \longrightarrow w$ instead of $v \xrightarrow{1} w$. Since D is 2-regular, the outdegree $\delta^{+}(v)$ and indegree $\delta^{-}(v)$ are 2 for every vertex $v \in V$.

Theorem 1. If D is a strongly connected 2 -regular digraph on $n(\geq 5)$ vertices, then $\operatorname{diam}(D) \leq n-3$.

Proof. Suppose that $\operatorname{diam}(D) \geq n-2$. There are vertices v, w in D such that $\operatorname{dist}(v, w)=n-2$. Since $v \xrightarrow{n-2} w$, there are $v_{0}, v_{1}, \ldots, v_{n-2}$ such that $v=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n-2}=w$. Since $\delta^{+}(v)=2$ and $\delta^{-}(w)=2$, there are vertices $v_{1}^{\prime}\left(\neq v_{1}\right), v_{n-3}^{\prime}\left(\neq v_{n-3}\right)$ such that $v_{1}^{\prime} \in$ $A^{+}(v)$ and $v_{n-3}^{\prime} \in A^{-}(w)$. Since $v_{1}^{\prime} \neq v_{0}, v_{1}$ and $\operatorname{dist}(v, w)=n-2, v_{1}^{\prime} \notin$ $\left\{v_{0}, v_{1}, \ldots, v_{n-2}\right\}$. Similarly, we can show that $v_{n-3}^{\prime} \notin\left\{v_{0}, v_{1}, \ldots, v_{n-2}\right\}$. If $v_{1}^{\prime}=v_{n-3}^{\prime}$, then $v \xrightarrow{2} w$ and $\operatorname{dist}(v, w)=2<n-2$, which is a contradiction. So the vertex set V includes $\left\{v_{0}, v_{1}, \ldots, v_{n-2}, v_{1}^{\prime}, v_{n-3}^{\prime}\right\}$, which contradicts $|V|=n$. So $\operatorname{diam}(D) \leq n-3$.

By the above theorem, $\operatorname{diam}(D) \leq n-3$. From now on we assume that $\operatorname{diam}(D)=n-3$. Then there are vertices v, w such that $\operatorname{dist}(v, w)=n-3$. So there are vertices $v_{0}, v_{1}, \ldots, v_{n-3}$ such that $v=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{n-3}=w$. And there are vertices $v_{1}^{\prime}\left(\neq v_{1}\right), v_{n-4}^{\prime}\left(\neq v_{n-4}\right)$ such that $v_{0} \longrightarrow v_{1}^{\prime}$ and $v_{n-4}^{\prime} \longrightarrow v_{n-3}$. In this case, $V=\left\{v_{0}, v_{1}, \ldots, v_{n-3}, v_{1}^{\prime}, v_{n-4}^{\prime}\right\}$. Using these notations, we have the following Lemma.

Lemma 1. Let $n \geq 7$ and $1 \leq i \leq n-6$. If $x \in\left\{v_{0}, v_{1}, \ldots, v_{i}, v_{1}^{\prime}\right\}$ and $y \in\left\{v_{i+2}, \ldots, v_{n-3}, v_{n-4}^{\prime}\right\}$, then $(x, y) \notin A$.

Proof. If $(x, y) \in A$, then

$$
\begin{aligned}
n-3=\operatorname{dist}\left(v_{0}, v_{n-3}\right) & \leq \operatorname{dist}\left(v_{0}, x\right)+\operatorname{dist}(x, y)+\operatorname{dist}\left(y, v_{n-3}\right) \\
& \leq i+1+n-i-5=n-4
\end{aligned}
$$

This is a contradiction.
Corollary 1. If $n \geq 10$ and $3 \leq i \leq n-7$, then $v_{i+1} \longrightarrow v_{i}$.

Proof. Let $A_{i}=\left\{v_{0}, v_{1}, \ldots, v_{i}, v_{1}^{\prime}\right\}$ and $B_{i}=\left\{v_{i+1}, \ldots, v_{n-3}, v_{n-4}^{\prime}\right\}$. Since $A_{i} \cup B_{i}=V, A_{i} \cap B_{i}=\phi$ and D is 2-regular, the number of arcs from A_{i} to B_{i} and from B_{i} to A_{i} are equal. By Lemma 1, there are no arc from A_{i-1} to B_{i} and from A_{i} to B_{i+1}. So (v_{i}, v_{i+1}) is the only arc from A_{i} to B_{i}. Thus there is only one arc from B_{i} to A_{i}. Let $A^{+}\left(v_{i+1}\right)=\left\{v_{i+2}, x\right\}$ and $A^{-}\left(v_{i}\right)=\left\{v_{i-1}, y\right\}$. Since there is no arc from $\left\{v_{i+1}\right\}$ to $B_{i+2}, x \in A_{i}$. Since $\left(v_{i+1}, x\right)$ is the only arc from B_{i} to A_{i}, there is no arc from B_{i+1} to $\left\{v_{i}\right\}$. So $y \in A_{i+1}$. By Lemma 1, there is no arc from A_{i-2} to $\left\{v_{i}\right\}$, which implies $y \notin A_{i-2}$. Since $y \neq v_{i-1}, v_{i}$ and $y=v_{i+1}$. Thus, $v_{i+1} \longrightarrow v_{i}$.

By Corollary 1, $v_{i+1} \rightarrow v_{i} \rightarrow v_{i-1}$ for $n \geq 11$ and $4 \leq i \leq n-7$. Since D is 2-regular we have the following corollary.

Corollary 2. If $n \geq 11$ and $4 \leq i \leq n-7$, then $A^{-}\left(v_{i}\right)=A^{+}\left(v_{i}\right)=$ $\left\{v_{i-1}, v_{i+1}\right\}$.

If $V^{\prime} \subset V$, then we use $\left\langle V^{\prime}\right\rangle$ to be the directed subgraph of $D=(V, A)$ which is induced by V^{\prime}. For $n \geq 2$, let P_{n} be the path on n vertices and P_{1} be trivial graph.

Lemma 2. If $n \geq 9$, then $\left\langle v_{3}, \ldots, v_{n-6}\right\rangle$ is isomorphic to the path P_{n-8}.

Proof. It is trivial when $n=9,10$. When $n \geq 11$, by Lemma $1, v_{3} \longrightarrow$ v_{n-6}. Since $A^{+}\left(v_{n-6}\right)=\left\{v_{n-5}, v_{n-7}\right\}, v_{n-6} \longrightarrow v_{3}$. So by Corollary 2, $\left\langle v_{3}, \ldots, v_{n-6}\right\rangle$ is isomorphic to the path P_{n-8}.

Lemma 3. If $n \geq 9$, then we have the followings.
(1) $\left\langle v_{0}, \ldots, v_{3}, v_{1}^{\prime}\right\rangle$ is isomorphic to one of H_{1}, \ldots, H_{5} in Figure 1 .
(2) $\left\langle v_{n-6}, \ldots, v_{n-3}, v_{n-4}^{\prime}\right\rangle$ is isomorphic to one of T_{1}, \ldots, T_{5} in Figure 1.

Proof. We divide the proof into the cases according to how the sets $A^{+}\left(v_{1}\right), A^{+}\left(v_{1}^{\prime}\right)$ are given.
Case1. $A^{+}\left(v_{1}\right)=\left\{v_{0}, v_{2}\right\}, A^{+}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{1}\right\}$
Since $A^{-}\left(v_{0}\right)=\left\{v_{1}^{\prime}, v_{1}\right\}$ and $A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{1}^{\prime}\right\}, v_{2} \rightarrow v_{1}^{\prime}$. Since $A^{-}\left(v_{1}^{\prime}\right)=$ $\left\{v_{0}, v_{2}\right\}$, by Lemma $1, v_{3} \rightarrow v_{2}$. So $<v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}>$ is isomorphic to H_{1} in Figure 1.
Case2. $A^{+}\left(v_{1}\right)=\left\{v_{1}^{\prime}, v_{2}\right\}, A^{+}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{1}\right\}$
Since $A^{-}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{1}\right\}$ and $A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{1}^{\prime}\right\}$, by Lemma $1 v_{2} \rightarrow v_{0}$.
Lemma 1 and the fact that $A^{-}\left(v_{0}\right)=\left\{v_{1}^{\prime}, v_{2}\right\}$ imply $v_{3} \rightarrow v_{2}$. We can
see $\left\langle v_{1}^{\prime}, v_{1}, v_{2}, v_{3}, v_{0}\right\rangle$ is isomorphic to H_{1} in Figure 1.
Case3. $A^{+}\left(v_{1}\right)=A^{+}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{2}\right\}$
Since $A^{-}\left(v_{0}\right)=\left\{v_{1}, v_{1}^{\prime}\right\}, v_{2} \longrightarrow v_{0}$. By Lemma $1, v_{2} \rightarrow v_{1}$ or $v_{2} \rightarrow v_{1}^{\prime}$. If $v_{2} \rightarrow v_{1}, A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{2}\right\}$. Since $A^{-}\left(v_{2}\right)=A^{-}\left(v_{0}\right)=\left\{v_{1}, v_{1}^{\prime}\right\}$, by Lemma $1 v_{3} \rightarrow v_{1}^{\prime}$. So $\left\langle v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}\right\rangle=H_{2}$ in Figure 1. If $v_{2} \rightarrow v_{1}^{\prime}$, then we have $v_{3} \rightarrow v_{1}$. And $\left\langle v_{0}, v_{1}^{\prime}, v_{2}, v_{3}, v_{1}\right\rangle$ is isomorphic to H_{2} in Figure 1.
Case4. $A^{+}\left(v_{1}\right)=\left\{v_{1}^{\prime}, v_{2}\right\}, A^{+}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{2}\right\}$
Since $A^{-}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{1}\right\}, v_{2} \longrightarrow v_{1}^{\prime}$. So $v_{2} \rightarrow v_{1}$ or $v_{2} \rightarrow v_{0}$. If $v_{2} \rightarrow v_{0}$, since $A^{-}\left(v_{0}\right)=\left\{v_{1}^{\prime}, v_{2}\right\}$ and $A^{-}\left(v_{2}\right)=\left\{v_{1}^{\prime}, v_{1}\right\}$, by Lemma $1 v_{3} \rightarrow v_{1}$. So $<v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}>$ is isomorphic to H_{3} in Figure 1. If $v_{2} \rightarrow v_{1}$, then $A^{-}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{1}\right\}, A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{2}\right\}$ and $A^{-}\left(v_{2}\right)=\left\{v_{1}, v_{1}^{\prime}\right\}$. By Lemma $1, v_{3} \rightarrow v_{0}$. So $\left\langle v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}\right\rangle$ is isomorphic to H_{4} in Figure 1.
Case5. $A^{+}\left(v_{1}\right)=\left\{v_{0}, v_{2}\right\}, A^{+}\left(v_{1}^{\prime}\right)=\left\{v_{1}, v_{2}\right\}$
Since $A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{1}^{\prime}\right\}$, by Lemma $1 v_{2} \rightarrow v_{0}$ or $v_{2} \rightarrow v_{1}^{\prime}$. If $v_{2} \rightarrow v_{0}$, since $A^{-}\left(v_{0}\right)=\left\{v_{1}, v_{2}\right\}, A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{1}^{\prime}\right\}$ and $A^{-}\left(v_{2}\right)=\left\{v_{1}, v_{1}^{\prime}\right\}$, by Lemma $1 v_{3} \rightarrow v_{1}^{\prime}$. So $\left\langle v_{0}, v_{1}^{\prime}, v_{2}, v_{3}, v_{1}\right\rangle$ is isomorphic to H_{3} in Figure 1. If $v_{2} \rightarrow v_{1}^{\prime}$, we must have $v_{3} \rightarrow v_{0}$. We can see $\left\langle v_{0}, v_{1}^{\prime}, v_{2}, v_{3}, v_{1}\right\rangle$ is isomorphic to H_{4} in Figure 1. Case6. $A^{+}\left(v_{1}\right)=\left\{v_{1}^{\prime}, v_{2}\right\}, A^{+}\left(v_{1}^{\prime}\right)=$ $\left\{v_{1}, v_{2}\right\}$
Lemma 1, $A^{-}\left(v_{1}\right)=\left\{v_{0}, v_{1}^{\prime}\right\}, A^{-}\left(v_{1}^{\prime}\right)=\left\{v_{0}, v_{1}\right\}$ and $A^{-}\left(v_{2}\right)=\left\{v_{1}, v_{1}^{\prime}\right\}$ imply $v_{2} \rightarrow v_{0}$ and $v_{3} \rightarrow v_{0}$. So $\left\langle v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}\right\rangle$ is isomorphic to H_{5} in Figure 1. So (1) holds. Similarly we can prove (2) by substituting $v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}$ with $v_{n-3}, v_{n-4}, v_{n-5}, v_{n-6}, v_{n-4}^{\prime}$ respectively.

We call H_{1}, \ldots, H_{5} in Lemma 3 as heads and T_{1}, \ldots, T_{5} in Lemma 3 as tails. We can see that the union of $\left\langle v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}\right\rangle,\left\langle v_{3}, \ldots, v_{n-6}\right\rangle$ and $\left\langle v_{n-6}, v_{n-5}, v_{n-4}, v_{n-3}, v_{n-4}^{\prime}\right\rangle$ is a 2 -regular digraph on V. So D is the union of subgraphs $\left\langle v_{0}, v_{1}, v_{2}, v_{3}, v_{1}^{\prime}\right\rangle,\left\langle v_{3}, \ldots, v_{n-6}\right\rangle$ and $\left\langle v_{n-6}, v_{n-5}, v_{n-4}\right.$, $\left.v_{n-3}, v_{n-4}^{\prime}\right\rangle$. Let $D_{i, j}$ be the union $H_{i} \cup P_{n-8} \cup T_{j}$ of digraphs H_{i}, P_{n-8} and T_{j} for $1 \leq i, j \leq 5$.

Theorem 2. If D is a strongly connected 2 -regular digraph on n vertices and $\operatorname{diam}(D)=n-3$, then D is isomorphic to one of $\left\{D_{i, j} \mid 1 \leq\right.$ $i \leq j \leq 5\}$ in Figure 2.

Proof. Let $D_{i, j}=H_{i} \cup P_{n-8} \cup T_{j}$. The functions f_{i} defined by

$$
\left(f_{i}\left(v_{0}\right), f_{i}\left(v_{1}\right), f_{i}\left(v_{2}\right), f_{i}\left(v_{3}\right), f_{i}\left(v_{1}^{\prime}\right)\right)=F_{i}
$$

where $F_{1}=\left(v_{n-3}, v_{n-4}^{\prime}, v_{n-5}, v_{n-6}, v_{n-4}\right), F_{2}=\left(v_{n-4}, v_{n-3}, v_{n-4}^{\prime}, v_{n-6}, v_{n-5}\right)$, $F_{3}=\left(v_{n-3}, v_{n-5}, v_{n-4}, v_{n-6}, v_{n-4}^{\prime}\right), F_{4}=\left(v_{n-5}, v_{n-4}^{\prime}, v_{n-4}, v_{n-6}, v_{n-4}\right)$,

Figure 1. Heads and tails
and $F_{5}=\left(v_{n-5}, v_{n-4}, v_{n-3}, v_{n-6}, v_{n-4}^{\prime}\right)$ give isomorphisms from H_{i} to T_{i} for all $i=1,2, \ldots, 5$. Thus $D_{i, j}$ and $D_{j, i}$ are isomorphic for all $i=1,2, \ldots, 5$. So D is isomorphic to one of

$$
\left\{D_{i, j} \mid 1 \leq i \leq j \leq 5\right\} .
$$

We can see these 15 digraphs are not isomorphic.
By Theorem 2, we can conclude that if D is a strongly connected 2regular digraph and $\operatorname{diam}(D)=d \geq 6$, then D has at least $d+3$ vertices and the extremal cases are given in Figure 2.

References

[1] D. Bhattacharya, The minimum order of n-connected n-regular graphs with specified diameters, IEEE Trans. Circuits Syst., CAS-32 (1985), No. 4, 407409.
[2] P. Dankelmann, The diameter of directed graphs, J. Combin. Theory Ser. B, 94 (2005), No. 1, 183-186.
[3] E. Engelhardt, V. Klee, K. Li, H. Quaife,Minimum graphs of specified diameter, connectivity and valence. II., Discrete Math. 78 (1989), No. 3, 257-266.

Figure 2. Extremal digraphs
[4] B. Grünbaum and T. Motzkin, Longest simple paths in polyhedral graphs, J. Lond. Math. Soc.(2) 37, 152-160 (1962).
[5] A. Knyazev, Diameters of Pseudosymmetric Graphs (Russian), Mat. Zametki, 41 (1987), No. 6, 829-843. (English translation: Math. Notes, 41 (5-6) (1987), 473-482.)
[6] V. Klee, Diameters of Polyhedral graphs, Canad. J. Math. 16 (1964), 602614.
[7] V. Klee, Classification and enumeration of minimum (d,3,3)-graphs for odd d, J. Combin. Theory Ser. B, 28 (1980), 184-207.
[8] V. Klee and H. Quaife, Minimum graphs of specified diameter, connectivity and valence, Math. Oper. Res. 1 (1976), No. 1, 28-31.
[9] V. Klee and H. Quaife, Classification and enumeration of minimum (d, 1, 3)graphs and minimum (d, 2, 3)-graphs, J. Combin. Theory Ser. B, 23 (1977), 83-93.
[10] J. Moon, On the diameter of graph, Michigan Math. J. 12 (1965), 349-351.
[11] B. Myers, The minimum-order three-connected cubic graphs with specified diameters, IEEE Trans. Circuits Syst. CAS-27 (1980), No. 8, 698-709.

Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail: kbm@gwnu.ac.kr
Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail: bcsong@gwnu.ac.kr
Department of Information and Mathematics
Korea University
Jochiwon 339-700, Korea
E-mail: woonjae@korea.ac.kr

[^0]: Received April 29, 2012. Revised June 13, 2012. Accepted June 15, 2012.
 2010 Mathematics Subject Classification: 05C20, 05C12, 05C07.
 Key words and phrases: 2-regular, diameter, digraphs.
 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 *Corresponding author.

