DOI QR코드

DOI QR Code

Template Synthesis of Polyaza Macrocyclic Copper(II) and Nickel(II) Complexes: Spectral Characterization and Antimicrobial Studies

  • Gurumoorthy, P. (PG and Research Department of Chemistry, The New College (Autonomous)) ;
  • Ravichandran, J. (PG and Research Department of Chemistry, The New College (Autonomous)) ;
  • Karthikeyan, N. (Centre for Advanced Studies in Botany, University of Madras, Guindy Maraimalai Campus) ;
  • Palani, P. (Centre for Advanced Studies in Botany, University of Madras, Guindy Maraimalai Campus) ;
  • Rahiman, A. Kalilur (PG and Research Department of Chemistry, The New College (Autonomous))
  • Received : 2012.02.08
  • Accepted : 2012.04.09
  • Published : 2012.07.20

Abstract

The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-aminopropylamino)ethane produce the 12-membered $N_3O$ and 17-membered $N_4O$ macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear $N_3O$ and $N_4O$ copper(II) complexes show one irreversible oneelectron reduction wave at $E_{pc}=-1.35$ and -1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at $E_{pc}=-1.25$ and -1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at $E_{pa}=+0.84$ and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

Keywords

References

  1. House, D. A.; Curtis, N. F. Chem. Ind. 1961, 42, 1708-1709.
  2. Busch, D. H. Adv. Chem. Ser. 1963, 1, 1-18.
  3. Gerbeleu, N. V.; Arion, V. B.; Burgess, J. Template Synthesis of Macrocyclic Compounds; Wiley-VCH: New York, 1999.
  4. Christensen, J. J.; Eatough, D. J.; Izatt, R. M. Chem. Rev. 1974, 74, 351-384. https://doi.org/10.1021/cr60289a003
  5. Nelson, S. M. Pure Appl. Chem. 1980, 52, 2461-2476. https://doi.org/10.1351/pac198052112461
  6. Bertolo, E.; Bastida, R.; Blas, A. D.; Fenton, D. E.; Loderio, C.; Macias, A.; Rodriguez, A.; Rodriguez-Blas, T. J. Inclusion Phenom. Macrocyclic Chem. 1999, 5, 191-198.
  7. Chandra, S.; Gupta, K. Trans. Met. Chem. 2002, 27, 329-332. https://doi.org/10.1023/A:1014898706298
  8. Cozzi, P. G. Chem. Soc. Rev. 2004, 33, 410-421. https://doi.org/10.1039/b307853c
  9. Bagihalli, G. B.; Patil, S. A.; Badami, P. S. J. Enzyme Inhib. Med. Chem. 2009, 24, 730-741. https://doi.org/10.1080/14756360802361571
  10. Shankar, K.; Rohini, R.; Sharavankumar, K.; Muralidhar Reddy, P.; Ho, Y.-P.; Ravinder, V. Spectrochim. Acta Part A 2009, 73, 205-211. https://doi.org/10.1016/j.saa.2009.01.021
  11. Rajasekar, M.; Sreedaran, S.; Prabu, R.; Narayanan, V.; Jagadeesh, R.; Raman, N.; Rahiman, A. K. J. Coord. Chem. 2010, 63, 136- 146. https://doi.org/10.1080/00958970903296362
  12. Yamashita, N.; Tanemura, H.; Kawanishi, S. Mutat. Res. 1999, 425, 107-115. https://doi.org/10.1016/S0027-5107(99)00029-9
  13. Wang, T.; Guo, Z. Curr. Med. Chem. 2006, 13, 525-537. https://doi.org/10.2174/092986706776055742
  14. Ruiz, M.; Perello, L.; Servercarrio, J.; Ortiz, R.; Garciagranda, S.; Diaz, M. R.; Canton, E. J. Inorg. Biochem. 1998, 69, 231-239. https://doi.org/10.1016/S0162-0134(97)10028-9
  15. Ibopishak Singh, O.; Damayanti, M.; Rajen Singh, N.; Hemakumar Singh, R. K.; Mohapatra, M.; Kadam, R. M. Polyhedron 2005, 24, 909-916. https://doi.org/10.1016/j.poly.2005.02.014
  16. Efthimiadou, E. K.; Katsarou, M. E.; Karaliota, A.; Psomas, G. J. Inorg. Biochem. 2008, 102, 910-920. https://doi.org/10.1016/j.jinorgbio.2007.12.011
  17. Yamanaka, T., Otsuka, S., Yamanaka, T., Eds.; Metalloproteins; Elsevier: Amsterdam, 1998; p 285-289.
  18. Sudhamani, C. N.; Bhojya Naik, H. S.; Ravikumar Naik, T. R.; Prabhakaran, M. C. Spectrochim. Acta Part A 2009, 72, 643-647. https://doi.org/10.1016/j.saa.2008.11.025
  19. Kong, D. M.; Wang, J.; Zhu, L. N.; Jin, Y. W.; Li, X. Z.; Shen, H. X.; Mi, H. F. J. Inorg. Biochem. 2008, 102, 824-832. https://doi.org/10.1016/j.jinorgbio.2007.12.002
  20. Verani, C. N.; Rentschler, E.; Weyhermüller, T.; Bill, E.; Chaudhuri, P. J. Chem. Soc., Dalton Trans. 2000, 251-258.
  21. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: 1988.
  22. Esteban, D.; Banobre, D.; de Blas, A.; Rodriguez-Blas, T.; Bastida, R.; Macias, A.; Rodriguez, A.; Fenton, D. E.; Adams, H.; Mahia, J. Eur. J. Inorg. Chem. 2000, 1445-1456.
  23. Platas, C.; Avecilla, F.; de Blas, A.; Rodriguez-Blas, T.; Bastida, R.; Macias, A.; Rodriguez, A.; Adams, H. J. Chem. Soc., Dalton Trans. 2001, 1699-1705.
  24. Rodriguez-Infante, C.; Esteban, D.; Avecilla, F.; de Blas, A.; Rodriguez-Blas, T.; Mahia, J.; Macedo, A. L.; Geraldes, C. F. G. C. Inorg. Chim. Acta 2001, 317, 190-198. https://doi.org/10.1016/S0020-1693(01)00425-X
  25. Radecka-Paryzek, W.; Litkowska, H. J. Alloys. Comp. 2000, 300-301, 435-438. https://doi.org/10.1016/S0925-8388(99)00758-6
  26. Lachkar, M.; Guilard, R.; Attamani, A.; Clan, A. D.; Fisher, J.; Weiss, R. Inorg. Chem. 1998, 37, 1575- 1584. https://doi.org/10.1021/ic9708327
  27. Tandon, S. S.; Thompson, L. K.; Bridson, J. N.; Mekee, V.; Downard, A. J. Inorg. Chem. 1992, 31, 4635-4642. https://doi.org/10.1021/ic00048a035
  28. Mandal, S. K.; Adhikary, B.; Naik, K. J. Chem. Soc., Dalton Trans. 1986, 1175-1180.
  29. Manonmani, J.; Kandaswamy, M.; Narayanan, V.; Thirumurugan, R.; Sundara Raj, S. S.; Shanmugam, G.; Ponnuswamy, M. N.; Fun, H. K. Polyhedron 2001, 20, 3039-3048. https://doi.org/10.1016/S0277-5387(01)00901-9
  30. Rybak-Akimova, E. V.; Busch, D. H.; Kahol, P. K.; Pinto, N.; Alcock, N. W.; Clase, H. J. Inorg. Chem. 1997, 36, 510-520. https://doi.org/10.1021/ic9601145
  31. Garber, Ty.; Wallendael, S. V.; Rillema, D. P.; Kirk, M.; Hatfield, W. E.; Welch, J. H.; Singh, P. Inorg. Chem. 1990, 29, 2863-2868. https://doi.org/10.1021/ic00340a028
  32. Volkmer, D.; Hommerich, B.; Griesar, K.; Haase, W.; Krebs, B. Inorg. Chem. 1996, 35, 3792-3803. https://doi.org/10.1021/ic951567x
  33. Garcia-Raso, A.; Fiol, J. J.; Adrover, B.; Caubet, A.; Espinosa, E.; Mata, I.; Molins, E. Polyhedron 2002, 21, 1197-1201. https://doi.org/10.1016/S0277-5387(02)01010-0
  34. Chandra, S.; Sharma, A. K. Spectrochim. Acta Part A 2009, 72, 851-857. https://doi.org/10.1016/j.saa.2008.12.022
  35. Tellez, F.; Pena-Hueso, A.; Barba-Behrens, N.; Contreras, R.; Flores-Parra, A. Polyhedron 2006, 25, 2363-2374. https://doi.org/10.1016/j.poly.2006.03.003
  36. Khandar, A. A.; Hosseini-Yazdi, S. A. Polyhedron 2003, 22, 1481-1487. https://doi.org/10.1016/S0277-5387(03)00124-4
  37. Thirumavalavan, M.; Akilan, P.; Kandaswamy, M. Inorg. Chem. 2003, 42, 3308-3317. https://doi.org/10.1021/ic020633+
  38. Benzekeri, A.; Dubourdeaux, P.; Latour, J. M.; Rey, P.; Laugier, J. J. J. Chem. Soc., Dalton Trans. 1991, 3359-3365.
  39. Hathaway, B. J. Copper in Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon Press: Oxford, 1987; 5, p 533.
  40. Kumar, U.; Chandra, S. Synth. React. Inorg. Met.-Org. Chem. 2004, 34, 1417-1430. https://doi.org/10.1081/SIM-200026270
  41. Kivelson, D.; Neiman, R. J. Chem. Phys. 1961, 35, 149-155. https://doi.org/10.1063/1.1731880
  42. Guzar, S. H.; Qin-han, J. I. N. J. Appl. Sci. 2008, 8, 2480-2485. https://doi.org/10.3923/jas.2008.2480.2485
  43. Hathaway, B. J.; Tomlinson, A. A. G. Coord. Chem. Rev. 1970, 5, 1-43. https://doi.org/10.1016/S0010-8545(00)80073-9
  44. Ray, R. K.; Kauffman, G. B. Inorg. Chim. Acta 1990, 173, 207- 214. https://doi.org/10.1016/S0020-1693(00)80215-7
  45. Singh, P. K.; Kumar, D. N. Spectrochim. Acta Part A 2006, 64, 853-858. https://doi.org/10.1016/j.saa.2005.08.014
  46. Mruthyunjayaswamy, B. H. M.; Ijare, O. B.; Jadegoud, Y. J. Braz. Chem. Soc. 2005, 16, 783-789. https://doi.org/10.1590/S0103-50532005000500016
  47. Bharathi, K. S.; Sreedaran, S.; Priya, P. H.; Rahiman, A. K.; Rajesh, K.; Jagadish, L.; Kaviyarasan, V.; Narayanan, V. J. Coord. Chem. 2009, 62, 1356-1372. https://doi.org/10.1080/00958970802570917
  48. Chohan, Z. H.; Scozzafova, A.; Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2003, 18, 259-263. https://doi.org/10.1080/1475636031000071817
  49. Chohan, Z. H.; Arif, M.; Akhtar, M. A.; Supuran, C. T. Bioinorg. Chem. Appl. 2006, 1-13.
  50. Spigaglia, P.; Barbanti, F.; Mantrantonio, P. Microb. Drug Resist. 2007, 13, 90-95. https://doi.org/10.1089/mdr.2007.723

Cited by

  1. Synthesis, Spectral Characterization and Biological Evaluation of Chromium(III) Complexes of Schiff Base vol.04, pp.02, 2014, https://doi.org/10.4236/ojic.2014.42005
  2. Synthesis, Crystal Structure, and Spectroscopic Properties of Cu(II) Complex with 14-Membered Hexaazamacrocyclic Ligands vol.46, pp.5, 2016, https://doi.org/10.1007/s10870-016-0649-8
  3. Macrocyclic [N5] transition metal complexes: synthesis, characterization and biological activities vol.86, pp.1-2, 2016, https://doi.org/10.1007/s10847-016-0649-5
  4. Quantum-chemical models of the molecular structures of open-chain and macrocyclic d-metal chelates with (N,O)- and (N,S)-donor polydentate ligands vol.62, pp.13, 2017, https://doi.org/10.1134/S0036023617130058
  5. Macrocyclic Cu(II) and Pd(II) complexes with new 16-membered tetradentate [N4] ligand: synthesis, characterization, 3D molecular modeling and in vitro anticancer and antimicrobial activities vol.90, pp.1-2, 2018, https://doi.org/10.1007/s10847-017-0774-9
  6. Molecular structures of M(II) chelates with compartmental (N,N)-, (N,O)- and (N,S)-donor ligands and articulated metal chelate cycles vol.0, pp.0, 2018, https://doi.org/10.1515/revic-2018-0005
  7. Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix vol.10, pp.1, 2012, https://doi.org/10.1016/j.arabjc.2016.10.014
  8. Synthesis and Electrochemical Studies of Novel Isothiocyanato Macrocyclic Mn(III) Complexes: Experimental and Theoretical Studies vol.66, pp.1, 2012, https://doi.org/10.1134/s0036023621010101