DOI QR코드

DOI QR Code

Equimolar Carbon Dioxide Absorption by Ether Functionalized Imidazolium Ionic Liquids

  • Sharma, Pankaj (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Sang-Do (Korea Carbon Dioxide Capture & Sequestration R&D Center) ;
  • Park, Ki-Tae (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Jeong, Soon-Kwan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Nam, Sung-Chan (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Baek, Il-Hyun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • Received : 2012.03.13
  • Accepted : 2012.04.19
  • Published : 2012.07.20

Abstract

A series $[C_3Omim]$[X] of imidazolium cation-based ILs, with ether functional group on the alkyl side-chain have been synthesized and structure of the materials were confirmed by various techniques like $^1H$, $^{13}C$ NMR spectroscopy, MS-ESI, FTIR spectroscopy and EA. More specifically, the influence of changing the anion with same cation is carried out. The absorption capacity of $CO_2$ for ILs were evaluated at 30 and $50^{\circ}C$ at ambient pressure (0-1.6 bar). Ether functionalized ILs shows significantly high absorption capacity for $CO_2$. In general, the $CO_2$ absorption capacity of ILs increased with a rise in pressure and decreased when temperature was raised. The obtained results showed that absorption capacity reached about 0.9 mol $CO_2$ per mol of IL at $30^{\circ}C$. The most probable mechanism of interaction of $CO_2$ with ILs were investigated using FTIR spectroscopy, $^{13}C$ NMR spectroscopy and result shows that the absorption of $CO_2$ in ether functionalized ILs is a chemical process. The $CO_2$ absorption results and detailed study indicates the predominance of 1:1 mechanism, where the $CO_2$ reacts with one IL to form a carbamic acid. The $CO_2$ absorption capacity of ILs for different anions follows the trend: $BF_4$ < DCA < $PF_6$ < TfO < $Tf_2N$. Moreover, the as-synthesized ILs is selective, thermally stable, long life operational and can be recycled at a temperature of $70^{\circ}C$ or under vacuum and can be used repeatedly.

Keywords

References

  1. Mandal, B. P.; Biswas, A. K.; Bandyopadhyay, S. S. Sep. Purif. Technol. 2004, 35, 191. https://doi.org/10.1016/S1383-5866(03)00139-4
  2. Mandal, B. P.; Bandyopadhyay, S. S. Chem. Eng. Sci. 2005, 60, 6438. https://doi.org/10.1016/j.ces.2005.02.044
  3. Lee, J. I.; Otto, F. D.; Mather, A. E. J. Chem. Eng. Data 1975, 20, 161. https://doi.org/10.1021/je60065a007
  4. Jane, I.-S.; Li, M.-H. J. Chem. Eng. Data 1997, 42, 98. https://doi.org/10.1021/je960270q
  5. Deshmukh, R. D.; Mather, A. E. Chem. Eng. Sci. 1981, 36, 355. https://doi.org/10.1016/0009-2509(81)85015-4
  6. Kuranov, G.; Rumpf, B.; Smirnova, N. A.; Maurer, G. Ind. Eng. Chem. Res. 1996, 35, 1959. https://doi.org/10.1021/ie950538r
  7. Perez-Salado Kamps, A.; Balaban, A.; Jodecke, M.; Kuranov, G.; Smirnova, N. A.; Maurer, G. Ind. Eng. Chem. Res. 2001, 40, 696. https://doi.org/10.1021/ie000441r
  8. Finotello, A.; Bara, J. E.; Camper, D.; Noble, R. D. Ind. Eng. Chem. Res. 2008, 47, 3453. https://doi.org/10.1021/ie0704142
  9. Mayland, B. J., U.S. Patent 3,275,403, 1966.
  10. Benson, H. E., U.S. Patent 3,642,430, 1972.
  11. Bierlein, J. A.; Kay, W. B. Ind. Eng. Chem. 1952, 45, 618.
  12. Meisen, A.; Shuai, X. Energy Convers Mgmt. 1997, 38, S37. https://doi.org/10.1016/S0196-8904(96)00242-7
  13. Galan Sanchez, L. M.; Meindersma, G. W.; de Haan, A. B. Chem. Eng. Res. Des. 2007, 85, 31. https://doi.org/10.1205/cherd06124
  14. Rao, A. B.; Rubin, E. Environ. Sci. Technol. 2002, 36, 4467. https://doi.org/10.1021/es0158861
  15. Ahn, S.; Song, H. J.; Park, J. W.; Lee, J. H.; Lee, I. Y.; Jang, K. R. Korean J. Chem. Eng. 2010, 27, 1576. https://doi.org/10.1007/s11814-010-0246-z
  16. Hoff, K. A.; Juliussen, O.; Pedersen, Falk, Svendsen, H. F. Indus. Eng. Chem. Res. 2004, 43, 4908. https://doi.org/10.1021/ie034325a
  17. Lepaumier, H.; Picq, D.; Carrette, P. L. Eng. Chem. Res. 2009, 48, 9061. https://doi.org/10.1021/ie900472x
  18. Welton, T. Coord. Chem. Rev. 2004, 248, 2459. https://doi.org/10.1016/j.ccr.2004.04.015
  19. Davis, J. H., Jr. ACS Symp. Ser. 2005, 902, 49.
  20. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  21. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667. https://doi.org/10.1021/cr010338r
  22. Dupont, J.; Consorti, C. S.; Spencer, J. J. Braz. Chem. Soc. 2000, 11, 337.
  23. Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126, 5300. https://doi.org/10.1021/ja039615x
  24. Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399, 28.
  25. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F. J. Phys. Chem. B 2005, 109, 6366. https://doi.org/10.1021/jp046404l
  26. Shiflett, M. B.; Drew, D. W.; Cantini, R. A.; Yokozeki, A. Energy and Fuels 2010, 24, 5781. https://doi.org/10.1021/ef100868a
  27. Zhang, X. C.; Liu, Z. P.; Wang, W. C. AIChE Journal 2008, 54, 2717. https://doi.org/10.1002/aic.11573
  28. Huang, J. H.; Ruther, T. Aus. J. Chem. 2009, 62, 298. https://doi.org/10.1071/CH08559
  29. Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926. https://doi.org/10.1021/ja017593d
  30. Fukumoto, K.; Yoshizawa, M.; Ohno, H. J. Am. Chem. Soc. 2005, 127, 2398. https://doi.org/10.1021/ja043451i
  31. Zhang, J. M.; Zhang, S. J.; Dong, K.; Zhang, Y. Q.; Shen, Y. Q.; Lv, X. M. Chem. Eur. J. 2006, 12, 4021. https://doi.org/10.1002/chem.200501015
  32. Zhang, Y. Q.; Zhang, S. J.; Lu, X. M.; Zhou, Q.; Fan, W.; Zhang, X. P. Chem. Eur. J. 2009, 15, 3003. https://doi.org/10.1002/chem.200801184
  33. Gurkan, B. E.; De La Fuente, J. C.; Mindrup, E. M.; Ficke, L. E.; Goodrich, B. F.; Price, E. A.; Schneider, W. F.; Brennecke, J. F. J. Am. Chem. Soc. 2010, 132, 2116. https://doi.org/10.1021/ja909305t
  34. Wang, C. M.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Ang. Chem. Int. Ed. 2010, 49, 5978. https://doi.org/10.1002/anie.201002641
  35. Wang, C. M.; Luo, H. M.; Luo, X. Y.; Li, H. R.; Dai, S. Green Chem. 2010, 12, 2019. https://doi.org/10.1039/c0gc00070a
  36. Wang, C. M.; Mahurin, S. M.; Luo, H. M.; Baker, G. A.; Li, H. R.; Dai, S. Green Chem. 2010, 12, 870. https://doi.org/10.1039/b927514b
  37. Wappel, D.; Gronald, G.; Kalb, R.; Draxler, J. Int. J. Greenhouse Gas Control 2010, 4, 486. https://doi.org/10.1016/j.ijggc.2009.11.012
  38. Goodrich, B. F.; de la Fuente, J. C.; Gurkan, B. E.; Zadigian, D. J.; Prices, E. A.; Huang, Y.; Brennecke, J. F. Ind. Eng. Chem. Res. 2011, 50, 111. https://doi.org/10.1021/ie101688a
  39. Fei, Z.; Zhao, D.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. Chem. Eur. J. 2004, 10, 4886. https://doi.org/10.1002/chem.200400145
  40. Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M. Chem. Eur. J. 2002, 8, 3671. https://doi.org/10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9
  41. Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chem. Eur. J. 2004, 10, 6581. https://doi.org/10.1002/chem.200400533
  42. Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. https://doi.org/10.1039/b103275p
  43. Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Graetzel, M. Inorg. Chem. 1996, 35, 1168. https://doi.org/10.1021/ic951325x
  44. Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Fluorine Chem. 1999, 99, 1. https://doi.org/10.1016/S0022-1139(99)00111-6
  45. Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Electrochem. Soc. 2002, 149, D1. https://doi.org/10.1149/1.1421606
  46. Hagiwara, R.; Matsumoto, K.; Nakamori, Y.; Tsuda, T.; Ito, Y.; Matsumoto, H.; Momota, K. J. Electrochem. Soc. 2003, 150, D195. https://doi.org/10.1149/1.1621414
  47. MacFarlane, D. R.; Golding, J.; Forsyth, S.; Forsyth, M.; Deacon, G. B. Chem. Commun. 2001, 1430.
  48. MacFarlane, D. R.; Forsyth, S. A.; Golding, J.; Deacon, G. B. Green Chem. 2002, 4, 444. https://doi.org/10.1039/b205641k
  49. Yoshida, Y.; Muroi, K.; Otsuka, A.; Saito, G.; Takahashi, M.; Yoko, T. Inorg. Chem. 2004, 43, 1458. https://doi.org/10.1021/ic035045q
  50. Forsyth, S. A.; Batten, S. R.; Dai, Q.; MacFarlane, D. R. Aust. J. Chem. 2004, 57, 121. https://doi.org/10.1071/CH03245
  51. Matsumoto, H.; Kageyama, H.; Miyazaki, Y. Chem. Commun. 2002, 1726.
  52. McEwen, A. B.; Ngo, H. L.; Compte, K. Le.; Goldman, J. L. J. Electrochem. Soc. 1999, 146, 1687. https://doi.org/10.1149/1.1391827
  53. Suarez, P. A. Z.; Einloft, S.; Dullius, J. E. L.; de Souza, R. F.; Dupont, J. J. Chim. Phys. 1998, 95, 1626. https://doi.org/10.1051/jcp:1998103
  54. Fannin, A. A.; Floreani, D. A.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, J. S.; Williams, J. L. J. Phys. Chem. 1984, 88, 2614. https://doi.org/10.1021/j150656a038
  55. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem. 2003, 120, 135. https://doi.org/10.1016/S0022-1139(02)00322-6
  56. Dzyuba, S. V.; Bartsch, R. A. Chem. Phys. Chem. 2002, 3, 161. https://doi.org/10.1002/1439-7641(20020215)3:2<161::AID-CPHC161>3.0.CO;2-3
  57. Matsumoto, K.; Hagiwara, R.; Yoshida, R.; Ito, Y.; Mazej, Z.; Benkic, P.; Zemva, B.; Tamada, O.; Yoshino, H.; Matsubara, S. J. Chem. Soc. Dalton Trans. 2004, 144.
  58. Kanakubo, M.; Umecky, T.; Hiejima, Y.; Aizawa, T.; Nanjo, H.; Kameda, Y. J. Phys. Chem. B 2009, 109, 13847.
  59. Muldoon, M. J.; Aki, S. N. N. K.; Anderson, J. L.; Dixon, J. K.; Brennecke, J. F. J. Phys. Chem. B 2007, 111, 9001. https://doi.org/10.1021/jp071897q
  60. Babarao, R.; Dai, S.; Jiang, D. J. Phys. Chem. B 2011, 115, 9789. https://doi.org/10.1021/jp205399r

Cited by

  1. ] Mixtures vol.27, pp.1, 2013, https://doi.org/10.1021/ef301541s
  2. Catalytic Activity of a Series of Synthesized and Newly Designed Pyridinium-Based Ionic Liquids on the Fixation of Carbon Dioxide: A DFT Investigation vol.54, pp.33, 2015, https://doi.org/10.1021/acs.iecr.5b01409
  3. Effect of Oxygenation on Carbon Dioxide Absorption and Thermophysical Properties of Ionic Liquids: Experiments and Modeling Using Electrolyte PC-SAFT vol.55, pp.32, 2016, https://doi.org/10.1021/acs.iecr.6b01984
  4. capture vol.111, pp.2261-236X, 2017, https://doi.org/10.1051/matecconf/201711103003
  5. vol.64, pp.1, 2017, https://doi.org/10.1002/aic.15921
  6. CO2 Solubility in Ether Functionalized Ionic Liquids on Mole Fraction and Molarity Scales vol.4, pp.2, 2012, https://doi.org/10.1021/acssuschemeng.5b00960
  7. Improving Physical Adsorption of CO2 by Ionic Liquids‐Loaded Mesoporous Silica vol.41, pp.7, 2012, https://doi.org/10.1002/ceat.201700314