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요 약

클러스터와 같은 분산 메모리 구조에서 각 노드는 전체 데이터의 일부분을 저장하고 있다. 이러한 구조에서는 데이터를 각 노드에 분산

시키는 방법이 성능에 영향을 준다. 데이터 분산 정책은 데이터를 노드들에게 분산시켜 병렬 데이터 처리를 실현하는 정책이다. 클러스터 관

리, 확장, 업그레이드 등 다양한 요인으로 인해 클러스터의 각 노드 성능이 동일하지 않을 수 있다. 이러한 클러스터에서 노드의 성능을 고

려하지 않은 데이터 분산 정책은 데이터를 각 노드에 효율적으로 분산시키지 못할 수 있다. 본 논문에서는 각 노드의 성능을 나타내는 인자

로 노드에 장착되어 있는 프로세서의 코어 수를 이용하고, 이를 고려한 데이터 분산 정책을 제안한다. 본 논문에서 제안하는 데이터 분산 정

책에서는 전체 코어 수 대비 노드에 장착된 코어 수에 비례하여 데이터를 노드에 분산 저장하도록 할당을 한다. 또, 본 논문에서 제안하는

데이터 분산 정책을 Chapel 언어를 이용하여 구현하였다. 본 논문에서 제안하는 데이터 분산 정책이 효과적임을 입증하기 위해 이 정책을

이용하여 Mandelbrot 집합과 원주율을 계산하는 병렬 프로그램을 작성하고, 클러스터에서 실행하여 실행 시간을 비교한다. 8-코어와 16-코

어로 구성되어 있는 클러스터에서 수행한 결과에 의하면 노드의 코어 수를 기반으로 한 데이터 분산 정책이 병렬 프로그램의 수행 시간 감

소에 기여하였다.

키워드 :데이터 분산, 부하 균등화, 다중 코어, 채플

Implementation of Multicore-Aware Load Balancing

on Clusters through Data Distribution in Chapel

Bongen Gu†․Patrick Carpenter††․Weikuan Yu†††

ABSTRACT

In distributed memory architectures like clusters, each node stores a portion of data. How data is distributed across nodes influences

the performance of such systems. The data distribution scheme is the strategy to distribute data across nodes and realize parallel data

processing. Due to various reasons such as maintenance, scale up, upgrade, etc., the performance of nodes in a cluster can often become

non-identical. In such clusters, data distribution without considering performance cannot efficiently distribute data on nodes. In this paper,

we propose a new data distribution scheme based on the number of cores in nodes. We use the number of cores as the performance

factor. In our data distribution scheme, each node is allocated an amount of data proportional to the number of cores in it. We implement

our data distribution scheme using the Chapel language. To show our data distribution is effective in reducing the execution time of

parallel applications, we implement Mandelbrot Set and π-Calculation programs with our data distribution scheme, and compare the

execution times on a cluster. Based on experimental results on clusters of 8-core and 16-core nodes, we demonstrate that data distribution

based on the number of cores can contribute to a reduction in the execution times of parallel programs on clusters.

Keywords : Data Distribution, Load Balancing, Multicore, Chapel
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1. Introduction

In the fields of seismic modeling, weather forecasting,

bioinformatics, medical image analysis, etc., high

performance computer systems are required to get results

within the pre-determined time period. Parallel processing

is one way to achieve high-performance computing.

Parallel systems are implemented using various

architectures, such as SMP, Cluster [1], GPGPU [2], etc.

Configuring parallel processing hardware, extracting the

parallelism from applications, representing parallelism, and

data distribution across cluster nodes are all required in

order to maximize the performance of parallel systems.

Modern parallel processing systems use distributed

memory systems for storing data [3]. In these systems,

each node stores a portion of data in its local memory.

So, load balancing through data distribution is important

to enhance the performance of parallel systems because

efficient data distribution can increase data parallelism

and reduce communication between nodes. Load balancing

is a methodology to distribute tasks and data across

nodes in a cluster and maximize task parallelism and/or

data parallelism in order to enhance the performance of

the cluster. In general, there are two ways to balance the

load at the application program level. One is that the

programmer explicitly allocates tasks and data at each

node to balance the load among nodes. Another is a run

time system which executes applications, automatically

re-distributing the workload across cluster nodes.

In parallel applications using communication libraries

such as MPI [4], PVM [5], etc., the programmer explicitly

distributes the load across cluster nodes. Thus, the degree

of load balancing depends on the programmer’s skill.

Moreover, this method may not properly adapt to changes

in the cluster's configuration. However, for parallel

applications that are implemented with a parallel

programming language such as Chapel [6] or ZPL [7], the

runtime system distributes data across nodes according to

a data distribution scheme specified by the application

program, and lets nodes process data stored in local

memory. Thus, application programmers can then focus

on implementing their algorithms without having to worry

about data and task distribution. Such programs can also

automatically adapt to changes on cluster configurations.

The data distribution scheme is the strategy for

exposing the data parallelism of a parallel program.

Therefore, data distribution determines how to distribute

data across nodes in cluster, and lets nodes process data

stored in local memory. Data distribution in a global

address space language such as Chapel additionally

supports the global address space model [6, 8, 9], which

lets programmers access data without having to specify

the node.

Well-designed parallel programs use data distribution

schemes suitable to their data access patterns. They can

attain much higher degrees of locality of access than

programs which do not employ appropriate data

distribution scheme. Higher locality of access means that

communication time for receiving and sending data is

reduced, and contributes to enhancing the performance of

the system. Chapel, etc. provide data distribution schemes

such as Block, BlockCyclic, and Cyclic [6]. These data

distribution schemes evenly distribute data across nodes

in clusters, so the amount of data stored in each node is

almost the same.

As data distribution schemes such as Block,

BlockCyclic and Cyclic evenly distribute data across

nodes, these data distribution schemes may not be

efficient in clusters where all nodes are not capable of the

same performance. That is, low performance nodes are

allocated the same amount of data as high performance

nodes. In this case, the data processing completion time in

the low performance nodes is delayed because the

computing capacity in the nodes is not enough. These

delayed times can delay the overall completion time of

parallel programs executed on such clusters.

If data distribution schemes could distribute data

across nodes according to their performance capabilities,

the problem previously described can be mitigated. In

such a data distribution scheme, the high performance

nodes in the cluster could store and process more data

than the low performance nodes. This can lead to a

reduction in the delay caused by nodes with less

performance capability. Ultimately such a data distribution

scheme could lead to a reduction in the execution time of

parallel programs on such clusters.

In this paper, we describe a load balancing scheme

which distributes data based on the node performance

capability, which we associate with the number of

processor cores. Multi-core processors are

microprocessors in which multiple cores are integrated.

This is an evolutionary technology, such as cache

systems, pipelines, superscalar and vector processor, etc.

for enhancing the performance of computer systems.

Currently, Intel and AMD are racing to integrate more

cores and functions into one processor chip, and have

announced a timeline for developing 8-core and 12-core

processors. Currently, 4-core and 6-core processors are

available on the CPU market.
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The reason for their racing is that the number of cores

in a processor determines the number of tasks/threads

concurrently executed. For example, a 4-core processor

can concurrently execute 4 tasks/threads. Therefore, a

processor which has more cores can concurrently execute

more tasks/threads. This results in an increase in

concurrent data processing. That is, the amount of data

concurrently processed can be in proportion to the

number of cores in a processor.

The data distribution scheme described in this paper

uses the number of cores as a raw metric to quantify

node performance because the number of tasks/threads

that can be concurrently executed is important to

maximize parallel execution. Thus, our data distribution

evenly distributes data across cores in cluster nodes to

balance the load. In our data distribution scheme, nodes

with more cores store and process more data. However,

as the amount of data per core is almost the same, the

processing completion time in a node is almost the same

among nodes. Therefore, the delay in completion time due

to under-performing nodes can be removed or reduced.

This can result in the reduction of the execution time of

parallel programs. This is not the case in other data

distribution schemes such as Block, BlockCyclic and

Cyclic.

To evaluate data distribution based on the number of

cores, we develop a new data distribution module using

the Chapel language, and also implement two parallel

programs using this data distribution scheme. These

parallel programs are executed on a cluster, and the

execution times are compared. The cluster used in our

experiments consists of 6 nodes. Two nodes in the

cluster contain two Intel Xeon processors recognized as

8-core processors via Intel’s hyper-threading technology,

officially called HT [10]. These nodes are considered

16-core nodes by the application. Four nodes in the

cluster contain two 4-core Intel Xeon processors, and are

recognized as 8-core nodes.

This paper is organized as follows: Section 2 describes

Chapel and data distribution. Section 3 gives motivation

for this work, and describes a new data distribution

scheme based on the number of cores. Section 4

describes the implementation of our data distribution

scheme. In Section 5, we describe the results of an

empirical performance evaluation. We discuss conclusions

and future work in Section 6.

2. Data Distribution in Chapel

2.1 Chapel Language

Developed by Cray Inc., Chapel is a programming

language for massively-parallel systems [6]. Chapel is a

global-view language which supports general parallelism

and provides better separation of algorithm and data

structure [9]. The meaning of the term “global-view

language” is that the programmer doesn’t use any special

index or descriptor to access array elements stored in

remote nodes. Each node is called a locale in Chapel. The

programmer uses an index defined in the domain, and

does not consider where the array element is stored.

Furthermore, Chapel supports general parallelism such as

data parallelism, task parallelism, and nested parallelism

at the level of the language specification [8]. Data and

task parallelism are previously described. Nested

parallelism means that we can use inner parallelisms in

outer parallelisms. Chapel clearly separates the algorithm

and the implementation [11, 12]. This means that the

programmer makes his program from a global viewpoint,

not in terms of the low level implementation. The low

level implementation is the responsibility of the compiler.

2.2 Data Distribution

One of the characteristics of contemporary high-

performance computing systems is a physically distributed

memory. In such an architecture, efficient management of

locality is essential to enhance the performance of the

system [3]. The global view for distributed data across

nodes is also supported, and tools for programmers are

provided to encourage higher productivity. Chapel can

support these features via data distribution classes.

Chapel provides Block, BlockCyclic, and Cyclic

distribution schemes as default data distributions. Chapel

also supports user-defined data distribution strategies [6,

11]. Chapel’s default distributions evenly divide all the

data, and distribute each data partition across nodes. In

this case, all nodes store and process the same amount of

data. We refer to such data distribution schemes as

locale-even.

For example, (Fig. 1(a)) shows code which declares a

2-dimensional array to store complex numbers. In this

code, Block distribution is used to distribute array data

across locales. A data distribution object is created in line

2 and the domain is declared via the distribution object in

line 3. Then, the array is declared in line 4. (Fig. 1(b))

shows the range of the array stored in each locale when

this code is executed on a 4-locale cluster. As the same

amount of data is allocated to each locale in the Block

distribution, each locale stores 262,144 complex numbers.
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(Fig. 1) Declaring a 2-dimensional array with Block data

distribution in Chapel: (a) sample code and (b) portions

of array allocated to each locale when the code is executed

on 4-locale cluster.

3. Data Distribution Based on the Number of

Cores

3.1 Motivations

If the performance capabilities of all locales are the

same, the completion times of data processing in each

locale may be the same because the amount of data

allocated to each locale is the same. However, if the

performance capabilities of locales are not the same, the

completion time of data processing in the

lowest-performing locale is longer than the times in other

locales. Therefore, the completion time in the

lowest-performing locale determines the total time

required to finish processing all the data. Data

distribution schemes which account for the performance

capacity of locales can enhance the performance of

clusters by reducing the difference in per-locale

completion times.

There are many ways to assess the performance

capacity of locales. In [13, 14], the BogoMIPS of Linux is

used as the performance metric. But [13, 14] did not

consider data distribution scheme and the number of

cores. In this paper, we use the number of cores in a

locale as the performance capability metric because the

number of cores influences the number of tasks/threads

concurrently executed in a locale, and processors with

more cores have higher performance than processor with

fewer cores (assuming similar clock frequencies). Even if

many tasks are created on a locale to process data, the

number of tasks concurrently executed depends on the

number of cores. So, if the amount of data allocated to

each locale is the same, the locale which has more cores

can concurrently execute more tasks, and the time

required to process the data is shorter. That is, data

distribution based on the number of cores in a locale can

contribute to a reduction in the execution time of parallel

programs.

3.2 Data Distribution Method

The method of distributing data based on the number

of cores is the following. Assume that the amount of

data processed by a parallel program is Dwhole, and the

total number of cores in a cluster is Cwhole. If data is

evenly distributed to each core of this cluster, the amount

of data allocated to each core is given by (1).

whole

whole
core C

DD =
(1)

Assuming that the number of cores in locale i is Licore,

the amount of data allocated to locale i, Lidata, is given by

(2). That is, data is allocated to locale i in proportion to

the ratio of Licore to Cwhole, and the amount of data

allocated to each core in the locales of the cluster is

almost the same. So, locales which have more cores are

given more data. We refer to this data distribution

scheme, and any others which evenly distribute data

based on the number of cores, as core-even.

whole

i
corewhole

core
i
core

i
data C

LDDLL ´
=´=

(2)

(Fig. 2(a)) shows the declaration of a 2-dimensional

array with the data distribution based on the number of

cores. CoreEvenBlock, which is a Chapel class for

implementing the data distribution scheme based on the

number of cores, will be described in the next section.

This code differs from the code using Block data

distribution shown in (Fig. 1(a)) at line 1. The statement

at line 1 creates the instance of CoreEvenBlock class.

Once this sample code is executed on a cluster which

consists on three 8-core locales and one 16-core locale,

(Fig. 2(b)) shows array regions allocated to each locale.

A 16-core locale has twice the number of cores as an

8-core locale, so in our data distribution scheme, the
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(Fig. 2) Declaring 2-dimensional array with our

CoreEvenBlock distribution in Chapel: (a) sample code and

(b) portions of array allocated to each locale when the

code is executed on cluster which consists of three 8-core

locales(LOCALE0, LOCALE1, and LOCALE3) and one 16-core

locale(LOCALE2).

amount of data allocated to a 16-core locale is twice that

of the data allocated to an 8-core locale.

To process data allocated to each locale in a parallel

manner, statements like forall are required to use data

parallelism supported by the system. In this case, locale i

creates and executes Litask tasks concurrently. L
i
task is the

number of tasks executed on locale i, and is given by

(3). In (3), the dataParTaskPerLocale is Chapel’s

configuration constant for specifying the number of tasks

created when executing a forall over a domain.

),max( kPerLocaledataParTasLL i
core

i
task = (3)

Basically, Litask is L
i
core because the user does not

specify dataParTaskPerLocale without a special purpose,

so as many tasks are concurrently executed as there are

cores in the locale. At that time, the amount of data

processed by task j on locale i, Tijdata is given by (4).

corei
core

core
i
core

i
core

i
data

i
task

i
dataij

data D
L
DL

L
L

L
LT =

´
===

(4)

As described through (1)-(4), in our data distribution

scheme, the amount of data allocated to a locale and the

number of tasks concurrently executed on a locale are

decided by the number of cores. Since each core

executing a task processes the same amount of data, we

expect the per-core processing times to be nearly the

same.

If the value of the dataParTasksPerLocale is greater

than Licore, more tasks are created than the number of

cores on a locale, and the amount of data processed by

each task is reduced. However, the amount of data

processed by each core executing tasks is almost the

same, and the elapsed time for data processing is almost

the same at the core level.

In the example shown in (Fig. 2), each 8-core locale

stores 209,920 data elements and creates eight tasks. The

16-core locale stores 419,840 data elements and creates

sixteen tasks. Each core on each locale in the cluster

processes 26,240 data.

4. Implementation of CoreEvenBlock

To realize data distribution based on the number of

cores, we describe the implementation of the

CoreEvenBlock data distribution module in this paper.

The CoreEvenBlock module consists of five classes,

the relations between instances of which are shown in

(Fig. 3).

CoreEvenBlock is the data distribution class, and

inherits from BaseDist class. CoreEvenBlock does not

implement all possible functions in our implementation.

The runtime system uses this class to create class

instances for the whole domain, e.g., CoreEvenBlockDom

in our implementation. Instances of this class are created

for the data distribution object at line 2 in (Fig. 2(a)).

CoreEvenBlockDom stores all domain information, and

partitions the whole domain among locales in the cluster.

An instance of it is created on each locale when the

domain is declared at line 3. At that time, the range of

the domain is assigned, and this information is stored in

the wholeDomain field. Then, the whole domain is

partitioned among locales by using the number of cores.

The size of partitioned domain for each locale is

calculated by (2). Once the domain partitioning is

complete, instances of CoreEvenBlockLocDom are created

in all locales by using each locale’s domain portion.

References to these instances in locales are stored in

locDoms[] fields in CoreEvenBlockDom. CoreEvent

BlockLocDom stores the portion of the domain assigned

to a locale in its myRange field, and the number of cores

in its tasks field.
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(Fig. 3) Relations between class instances in CoreEvenBlock
distribution

The CoreEvenBlockArr class represents the array

declared by element type and domain previously

described, and instances of this class are created at line

4. At that time, by using the CoreEvenBlockLocDom

instance stored in each locale, CoreEvenBlockLocArr

instancs are created, the references to which are stored in

the locArr[ ] field of CoreEvenBlockArr. The portion of

the data corresponding to the domain stored in

CoreEvenBlockLocDom is physically stored in its

myElems[] field, and this is part of the whole array data.

To use data parallelism for processing data stored in

arrays according to this data distribution, the forall

statement in Chapel is used. In forall statements with

domains like that at line 4 in (Fig. 2(a)), instances of

CoreEvenBlockDom create as many tasks as cores. In

the case of forall with array variable shown in (Fig.

2(a)). line 5, CoreEvenBlockArr instances create as many

tasks as cores, and the amount of data processed by each

core is Dcore given by (1).

5. Performance Evaluation

5.1 Experimental Environment

In this section, we show that data distribution based on

the number of cores contributes to a reduction in the

execution time of parallel programs by evenly distributing

data among cores, and can enhance the performance of

clusters in terms of application execution time. For our

performance evaluation, we use a cluster which consists of

six locales. Four locales in our cluster are equipped with

two Intel Xeon E5506 processors which have four cores.

Therefore, these locales are detected as 8-core locales.

Two locales are equipped with two Intel Xeon E5520

processors. This Xeon processor has 4 cores, but uses

Intel HT technology, so this processor is treated as 8-core

processor. So locales with two Xeon E5520 processors are

detected as 16-core locales. Locales in the cluster

communicate with each other via an Infiniband network.

To evaluate the performance, we make two parallel

programs, Mandelbrot Set [15] and π-calculation, and

measure their execution times on our cluster. The

Mandelbrot Set program repeatedly computes data stored

in array elements, but the number of iterations is not

identical for all data because the termination condition for

each data element is repeatedly checked after each

computation, and the iteration is terminated when the

condition is matched. Therefore the elapsed execution

time of each task may differ from that of each other.

The π-calculation program uses a MonteCarlo [16]

method, and the number of iterations for each array

element is identical. So, the elapsed execution time of

each task may be identical. At this point, the π

-calculation program is more compute-intensive than the

Mandelbrot Set program. The choice of two parallel

programs with differing degrees of computational intensity

is intentional.

5.2 Mandelbrot Set Parallel Program

(1) Experiment Results

The Mandelbrot Set program used in our evaluation

declares a 1024x1024 array of complex numbers. To show

that our data distribution is effective in reducing the

execution time of parallel programs, we compare the

execution times of two versions of this program. One

uses CoreEvenBlock as the data distribution scheme, and

the other uses Block. The programs differ only in terms

of the data distribution, so the difference in execution

times between them must be due to the data distribution.

The execution times are measured using the Timer class

defined in Chapel's Time module. Each program is

executed ten times, and we use average of ten execution

times to evaluate and analyze the performance.

(Fig. 4) shows the execution times in the case that the

number of cores in all locales is identical. The X-axis

and Y-axis represent the number of locales in the cluster

and the execution times of two programs, respectively.

Because the number of cores in all locales is identical,

CoreEvenBlock distributes data across locales evenly. In

this cluster configuration, the execution times of programs

with CoreEvenBlock and Block distribution do not differ

from each other.
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(Fig. 4) Execution Time of Mandelbrot Set Program on

cluster which consists of all 8-core locales

(Fig. 5) Execution Time on cluster which consists of two

locales

(Fig. 6) Execution Time on cluster which consists of

three locales

(Fig. 7) Execution Time on cluster which consists of

four locales

(Fig. 5) shows the execution times on a cluster which

consists of two locales. The X-axis represents the

configuration of the cluster. The configuration ‘2O0H’

represents the cluster which consists of two 8-core

locales. In this configuration, there is not a 16-core locale

in the cluster. ‘1O1H’ represents a cluster which consists

of one 8-core locale and one 16-core locale. The Y-axis

represents the execution time. In the ‘2O0H’ configuration,

the execution times of two programs do not differ from

each other because CoreEvenBlock distributes data on

locales evenly like Block as described above.

However, in the ‘1O1H’ configuration, CoreEvenBlock

reduces the execution time by about 27% compared to

Block. The reason for this result is that CoreEvenBlock

considers the number of cores on locale to decide the

amount of data allocated to locale.

(Fig. 6) shows the execution times on cluster which

consists of three locales. In ‘3O0H’ configuration, as

expected, the execution times of two programs do not

differ from each other. In ‘2O1H’ and ‘1O2H’

configurations, CoreEvenBlock distribution reduces

execution times by about 35% compared to that of Block.

(Fig. 7) shows the execution times on cluster which

consists of four locales. In the case of ‘3O1H’ and ‘2O2H’,

our data distribution reduces the execution time by about

8% and 4.5%, respectively. In the case of a four-locale

cluster, the performance results are similar to those of

two- and three-locale clusters.

(2) Contributions

In the case of clusters in which locales have the same

number of cores such as ‘2O0H’, ‘3O0H’, ‘4O0H’, the

execution times of two programs with CoreEvenBlock and

Block, respectively, do not differ from each other. However,

in the case of clusters in which the number of cores in

locales is not same, the execution time of program with

CoreEvenBlock is shorter than that of program with Block.

These results show that our data distribution scheme based

on the number of cores can be effective in reducing the

execution time of parallel programs.

(3) Strange Results

In Block distribution, data is evenly distributed to

locales. Therefore, if the number of locales in the cluster

is the same, the performance of the cluster may be the

same regardless of the number of cores in locales. That

is, the execution time of parallel program will be almost

the same on clusters with ‘3O0H’, ‘2O1H’, and ‘1O2H’. As

expected, the execution times on clusters with ‘3O0H’ and

‘2O1H’ are almost same, and that of ‘4O0H’ and ‘3O1H’

are also almost same. But in the cluster configuration

‘1O1H’, ‘102H’, and ‘2O2H’, the execution time is reduced

against our expectation. These results are common in the

case of clusters in which the percentage of 16-core

locales is greater than 50%.

From these results, we think the number of cores in

locales influences executions of parallel programs. We are
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(Fig. 8) Execution Time of Block-enabled π-Calculation

program on clusters

(Fig. 9) Execution Time on cluster which consists of

three locales

not sure how the number of cores can influence execution

but we anticipate that it influences the number of tasks

created. However, Block distribution evenly allocates data

to locales as described above. Nevertheless, CoreEven

Block shows the shorter execution time than Block.

5.3 π-Calculation Parallel Program

(1) Motivations

To investigate the cause of the strange results

described above, and the effect of our distribution on Intel

HT technology processor once a parallel program is

executed on it, we evaluate the execution times of a

program which has more compute-intensive tasks. Intel

HT technology enables multiple threads to run on each

core because it uses processor resources more efficiently.

Therefore the number of cores showed to programs and

the runtime system is twice the number of physical cores.

Even though Intel HT technology increases utilization

and efficiency of resources, the computing capacity of the

logical number of cores cannot exceed that of the

physical number of cores. If our expectation is correct,

the execution times of a more compute-intensive

Block-enabled program on clusters configured by the

same number of locales such as ‘3O0H’, ‘2O1H’, and

‘1O2H’ are almost the same. Also, the execution times of

a more compute-intensive CoreEvenBlock-enabled

program are longer than that of Block-enabled program

because our distribution allocates overloaded data to

logically 16-core but physically 8-core locale. In this case,

the utilization of processor is already very high, so Intel

HT technology does not work well.

To verify our expectation, we make a π-calculation

program which is significantly more compute-intensive

than the one discussed earlier. To calculate the value of

π, we use a MonteCarlo method.

(2) Experiment Results

In the π-calculation program implemented for our

evaluation, we declare a 1-dimensional array with 1024

elements to distribute compute tasks across locales. We

also use two versions of the program to evaluate the

execution time. One uses Block, and another uses

CoreEvenBlock as distribution. These programs are

executed on clusters which have the same configurations

used to execute the Mandelbrot Set program. Each

program is also executed ten times, and we use the

average of ten execution times to evaluate and analyze

the performance.

(Fig. 8) shows the execution times of Block-enabled

program on 2-locale, 3-locale, and 4-locale cluster. As we

expected, the execution times are almost the same if the

number of locales on the cluster is the same regardless

of the number of 16-core locales due to Intel HT.

(Fig. 9) and (Fig. 10) show the execution times of

programs on 3-locale and 4-locale clusters, respectively.

As described above, the execution times of Block-enabled

program are almost the same, but the execution times of

CoreEvenBlock-enabled program are longer than that of

Block-enabled version. The reason for these results is the

following: CoreEvenBlock distributes data to locales by

considering the number of cores. So, locales perceived as

16-core due to Intel HT are allocated data in proportion

to the number of cores. But these locales have just 8

physical cores, so these locales become overloaded in the

case of more compute-intensive tasks. The long data

processing times on overloaded locales influence the

whole execution time of the program.

In the case of ‘1O2H’ shown in (Fig. 9), CoreEven

Block-enabled program allocates 411 data elements to

each 16-core locale. In the case of ‘2O1H’, it allocates 511

data elements to one 16-core locale. So a 16-core locale

on ‘1O2H’ is less overloaded than on ‘2O1H’. Therefore

the CoreEvenBlock-enabled program on ‘1O2H’ has a

shorter execution time than on ‘2O1H’ configuration as

shown in (Fig. 9). There exist the same results on

4-locale cluster shown in (Fig. 10).
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(Fig. 10) Execution Time on cluster which consists of four

locales

Cluster

Recognized

number of

cores

Data

per

core

Data per

Physical Core
Execution

time(sec.)8-core

locale

16-core

locale

by HT

1O2H 40 25.6 25.6 51.2 14.30

3O1H 40 25.6 25.6 51.2 13.99

3O0H 24 42.67 42.66 - 12.64

2O2H 48 21.33 21.33 42.66 11.72

<Table 1> The amount of data per core and execution time

As a result, the execution times are almost same if the

number of locales on cluster is same regardless of the

number of 16-core locale due to Intel HT. Table 1 shows

the number of data elements per core and execution time

when 1024 data elements are processed. The amount of

data allocated to the physical core influences the

execution time of more compute-intensive applications,

like our π-calculation implementation. In the 3O0H

configuration, each core processes about 42.66 data

elements, and the execution time is about 12.64. In the

2O2H configuration, each core is allocated about 21.33

data elements by the CoreEvenBlock. In this case, the

physical cores in locale recognized as 16-core due to Intel

HT are allocated about 42.66 data elements. Thus, the

execution time of the program depends on the execution

times of the physical cores which process 42.66 data

elements, which is about 11.72 seconds. Therefore the

execution times of more compute-intensive applications

depend on the amount of data allocated to the physical

cores, not the locales or the logical cores

Assume that our π-calculation program, which declares

2048 data elements, is executed on a cluster which

consists of two 8-core locales and two 16-core locales,

2O2H. If all cores in locales are physical, the execution

time may be about 12 seconds because the number of

data elements per core allocated by our CoreEvenBlock is

42.66. However, the number of data elements per locale

allocated by Block is 512. In this case, the core on 8-core

and 16-core locales process 64 and 32 data, respectively.

Therefore, the execution time depends on that of 8-core

locales, and is longer than the case of CoreEvenBlock.

From our experimental results and analysis, our data

distribution is effective on clusters which consists of

locales with multiple physical core processors even in the

case of more compute-intensive applications.

6. Conclusion

A main feature of high-performance computing

architectures is the physically distributed memory. With

such distributed memory, data locality may influence the

performance of the system, and optimal data distribution

to computing nodes is helpful in increasing data locality.

It is important to maximize data parallelism based on

distribution of data to nodes.

In this paper, we proposed data distribution based on

the number cores in nodes-defined as locales in Chapel-

and programmed the CoreEvenBlock module for

implementing our data distribution scheme. Our

implementation is based on the Chapel language. To

demonstrate that our data distribution can contribute to a

reduction in the execution time of parallel programs, we

also implemented two programs: Mandelbrot Set and π

-Calculation. From evaluation results, the contributions of

our work are the following:

(1) If the numbers of cores in nodes in a cluster are

not identical, our data distribution based on the number

of cores can reduce the execution time of parallel

programs using core-level load balancing.

(2) In the case of less compute-intensive applications,

our data distribution is effective on clusters which consist

of nodes equipped with Intel HT-enabled processors.

(3) As a result of our analysis, we expect that our

data distribution is effective on clusters which consist of

nodes equipped with physically multiple-core processors,

even in the case of more compute-intensive applications.

We plan to conduct many more studies in efficient

data distribution. Data distribution considering CPU cores

and GPGPU cores on clusters which consist of CPU+GPU

hybrid nodes can reduce the execution time of parallel

programs. Also, if we can detect data access patterns of

parallel programs, data distribution considering these

patterns can also reduce the execution time and increase

system efficiency. In the future, we will study data

distribution schemes adapting to different data access

patterns on CPU+GPGPU clusters.
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