DOI QR코드

DOI QR Code

변형 폴리욜법에 의한 Bi 나노입자의 제조

Synthesis of Bi Nanoparticles Using a Modified Polyol Method

  • 조혜정 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Cho, Hye-Jung (Department of Materials Science & Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science and Technology)
  • 투고 : 2012.06.06
  • 심사 : 2012.06.26
  • 발행 : 2012.06.30

초록

Bismuth(III) carbonate basic을 전구체로 사용하여 상온 습식 환원법인 변형 폴리욜법으로 순수 비스무트 나노입자를 합성하면서 캡핑제 또는 표면 안정제의 교체 및 용매의 종류에 따른 비스무트 입자의 제조 특성을 각각 관찰하였다. Polyvinylpyrroldone(PVP) 캡핑제 첨가 조건에서 합성 직후 기준으로 diethylene glycol(DEG) 용매 사용 시 가장 미세한 비스무트 나노입자가 형성되었으며, polyethylene glycol(PEG) 용매 사용 시 가장 조대한 비스무트 나노입자가 합성되었다. 합성 직후에 관찰된 나노입자의 크기와 건조 후 합체 및 엉겨붙음 거동으로 성장한 입자의 크기는 잘 비례하였는데, DEG 용매 사용 시 최종 단계에서 수십 nm~약 300 nm 직경의 가장 미세한 비스무트 입자를 얻을 수 있었다. 또한 캡핑제 및 표면 안정제의 종류에 상관없이 PEG 용매를 사용하여 합성한 경우에서는 광범위한 합체 및 엉겨붙음 거동이 관찰되어 상대적으로 조대한 입자들이 뭉친 형태의 최종 시료가 얻어졌다.

Bismuth(Bi) nanoparticles were synthesized at room temperature by a modified polyol process using bismuth(III) carbonate basic as precursor. In addition, some characteristics of the synthesis with respect to the exchange of a capping agent/surface stabilizer and solvent type were observed. When polyvinylpyrroldone was added, the finest Bi nanoparticles were synthesized in diethylene glycol(DEG), while the coarsest nanoparticles were formed in polyethylene glycol(PEG). The particle size immediately after synthesis was proportionate to final particle size which was determined by particle growth through coalescence and aggregation during drying. As a result, the finest Bi particles with the diameter range of several tens of nanometers - 300 nm were finally obtained in DEG. Regardless of the type of capping agent/surface stabilizer, extensive coalescence and aggregation behavior occurred in PEG, resulting in final products agglomerated with coarse particles.

키워드

참고문헌

  1. J. -H. Kim, C. -Y Hyun and J. -H. Lee, "Interfacial Reaction Characteristics of a Bi-20Sb-10Cu-0.3Ni Pb-free Solder Alloy on Cu Pad", J. Microelectron. Packag. Soc., 17(1), 1 (2010).
  2. O. Rohr, "Bismuth-The New Ecologically Green Metal for Modern Lubricating Engineering", Ind. Lubr. Tribol., 54, 153 (2002). https://doi.org/10.1108/00368790210431709
  3. J. P. Heremans, C. M. Thrush, D. T. Morelli and M. C. Wu, "Thermoelectric Power of Bismuth Nanocomposites", Phys. Rev. Lett., 88, 216801 (2002). https://doi.org/10.1103/PhysRevLett.88.216801
  4. P. Chiu and I. Shih, "A Study of the Size Effect on the Temperature- Dependent Resistivity of Bismuth Nanowires with Rectangular Cross-Sections", Nanotechnology, 15, 1489 (2004). https://doi.org/10.1088/0957-4484/15/11/020
  5. S. Park, K. Kang, W. Q. Han and T. Vogt, "Synthesis and Characterization of Bi Nanorods and Superconducting NiBi Particles", J. Alloy Comp., 400, 88 (2005). https://doi.org/10.1016/j.jallcom.2005.03.063
  6. G. Bhimarasetti and M. K. Sunkara, "Synthesis of Sub-20-nm-Sized Bismuth 1-D Structures Using Gallium-Bismuth Systems", J. Phys. Chem. B, 109, 16219 (2005). https://doi.org/10.1021/jp0529873
  7. Y. -N. Choi, M. -Y. Kim and T. -S. Oh, "Thermoelectric Properties of Bi-Te Thin Films Processed by Coevaporation", J. Microelectron. Packag. Soc., 17(4), 89 (2010).
  8. M. R. Roh, J. Y. Choi and T. S. Oh, "Thermoelectric Properties of the Hot-pressed $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ with Dispersion of Tungsten Powders", J. Microelectron. Packag. Soc., 18(4), 55 (2011).
  9. J. L. Costa-Krämer, N. Garcia and H. Olin, "Conductance Quantization in Bismuth Nanowires at 4 K", Phys. Rev. Lett., 78, 4990 (1997). https://doi.org/10.1103/PhysRevLett.78.4990
  10. K. Liu, C. L. Chien, P. C. Searson and K. Yu-Zhang, "Structural and Magneto-Transport Properties of Electrodeposited Bismuth Nanowires", Appl. Phys. Lett., 73, 1436 (1998). https://doi.org/10.1063/1.122378
  11. J. Heremans and C. M. Thrush, "Thermoelectric Power of Bismuth Nanowires", Phys. ReV. B, 59, 12579 (1999). https://doi.org/10.1103/PhysRevB.59.12579
  12. M. R. Black, Y.-M. Lin, S. B. Cronin, O. Rabin and M. S. Dresselhaus, "Infrared Absorption in Bismuth Nanowires Resulting from Quantum Confinement", Phys. ReV. B, 65, 195417 (2002). https://doi.org/10.1103/PhysRevB.65.195417
  13. M. R. Black, P. L. Hagelstein, S. B. Cronin, Y. M. Lin and M. S. Dresselhaus, "Optical Absorption from an Indirect Transition in Bismuth Nanowires", Phys. ReV. B, 68, 235417 (2003). https://doi.org/10.1103/PhysRevB.68.235417
  14. A. Nikolaeva, D. Gitsu, T. Huber and L. Konopko, "Confinement Effect in Single Nanowires Based on Bi", Phys. B, 346-347, 282 (2004). https://doi.org/10.1016/j.physb.2004.01.066
  15. Y. Zhao, Z. Zhang and H. Danga, "A Simple Way to Prepare Bismuth Nanoparticles", Mater. Lett., 58, 790 (2004). https://doi.org/10.1016/j.matlet.2003.07.013
  16. J. Wang, X. Wang, Q. Peng and Y. Li, "Synthesis and Characterization of Bismuth Single-Crystalline Nanowires and Nanospheres", Inorg. Chem., 43, 7552 (2004). https://doi.org/10.1021/ic049129q
  17. Y. W. Wang, B. H. Hong and K. S. Kim, "Size Control of Semimetal Bismuth Nanoparticles and the UV-Visible and IR Absorption Spectra", J. Phys. Chem. B, 109, 7067 (2005). https://doi.org/10.1021/jp046423v
  18. Y. Wang, J. Zhao, X. Zhao, L. Tang, Y. Li and Z. Wang, "A Facile Water-Based Process for Preparation of Stabilized Bi Nanoparticles", Mater. Res. Bull., 44, 220 (2009). https://doi.org/10.1016/j.materresbull.2008.03.026
  19. M. Cachile and A. M. Cazabat, "Spontaneous Spreading of Surfactant Solutions on Hydrophilic Surfaces: $C_{n}E_{m}$ in Ethylene and Diethylene Glycol", Langmuir, 15, 1515 (1999). https://doi.org/10.1021/la980840f
  20. F. Comelli and S. Ottani, "Densities, Viscosities, Refractive Indices, and Excess Molar Enthalpies of Binary Mixtures Containing Poly(ethylene glycol) 200 and 400 + Dimethoxymethane and + 1,2-Dimethoxyethane at 298.15 K", J. Chem. Eng. Data, 47, 1226 (2002). https://doi.org/10.1021/je0255224