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Abstract

The modifications suggested in Uhm et al. (2011) are studied using a partly parametric version of Aalen’s

additive risk model. A follow-up time period is partitioned into intervals, and hazard functions are estimated

as a piecewise constant in each interval. A maximum likelihood estimator by iteratively reweighted least

squares and variance estimates are suggested based on the model as well as evaluated by simulations using

mean square error and a coverage probability, respectively. In conclusion the modifications are needed when

there are a small number of uncensored deaths in an interval to estimate the piecewise constant hazard

function.

Keywords: Aalen’s additive risk model, piecewise constant, hazard function, weighted least square, sur-

vival analysis.

1. Introduction

In a survival analysis Aalen’s additive risk model (1980) is a useful alternative regression model to

Cox’s proportional hazard model (1972). In the Aalen’s model the effects of covariates might vary on

time. Aalen (1989) suggested a non-parametric estimation for the additive risk model, and Huffer

and McKeague (1991) introduced a weighted least squares (WLS) estimator for the cumulative

hazard function with constant covariates. They also suggested WLS estimators for a grouped data

case and variance estimates. For the grouped data case a follow-up time period [0, T ] is partitioned

into d intervals, and the hazard functions are estimated as a piecewise constant in each interval.

The WLS estimator was modified by smoothing ordinary least squares (OLS) estimates over the

past using a kernel function since weights might blow up or be negative with too samll or negative

estimates of the hazard function. McKeague and Sasieni (1994) studied a partly parametric version

of Aalen’s risk model, which was defined as

h(t|x, z) = α(t)′x+ β′z, (1.1)

where x and z are p- and q-dimensional covariate vectors, α(t) is the time-varying hazard function,

and β is the unknown constant hazard. The first component of x might be 1 for a baseline hazard.
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They suggested semiparametric estimators for the cumulative hazard function, A(·) =
∫ ·
0
α(s)ds

and β. If β is known, the least squares estimator for the cumulative hazard function could be

given. Also α(·) is given, estimate of β is obtained by maximum likelihood. To avoid unstable

weights, they also used a predictable kernel smoother and modified the hazard function. Lin and

Ying (1994) studied Aalen’s model, and suggested a simple procedure to estimate the regression

coefficients with high efficiency. Recently, Uhm et al. (2011) studied the WLS estimator for Aalen’s

model which allowed a very flexible handling of covariates, and they extended the grouped data

version of Huffer and McKeague’s (1991) estimator. They obtained maximum likelihood estimators

(MLE) for the cumulative hazard function by iterative reweighted least squares (IRLS), and they

modified the hazard functions over neighboring intervals.

The previous studies mentioned that the estimates were not stable when there were a small number

of uncensored deaths in each interval. With negative or very small hazard estimates the weights

should be negative and blow-up, and the IRLS estimates might not converge. In this article the

modifications of smoothing and updating in Uhm et al. (2011) are studied based on the model (1.1).

The modifications of smoothing and updating are compared based on various conditions, and the

effects of the modifications are discussed. The smoothing window size and its relationship with

updating modification are also studied depending on sample size. Guidelines in modifications are

suggested for application using the additive risk model.

In Section 2 the WLS estimator is suggested. In addition, it discusses the weight modifications and

variance estimates. The modifications of weights and the variance estimations are evaluated using

a mean square error (MSE) and a coverage probability by simulations in Section 3. An application

with a lung cancer data is reported in Section 4. Results and implications are concluded and

summarized in Section 5.

2. Piecewise Constant Hazard Function

Uhm et al. (2011) extended the grouped data case of Huffer and McKeague’s model (1991), and

studied the WLS estimators for the Aalen’s additive risk model. In this section their estimation

and modifications are introduced based on the model in (1.1). The follow-up time period [0, 1] is

partitioned into d intervals.

2.1. Estimation

For individual i, the piecewise constant hazard function in interval r (= 1, 2, . . . , d) is defined as

hir = α′
rxi + β′zi, (2.1)

where αr is a p-dimensional hazard vector for the time-varying effect in interval r, and β is a

q-dimensional constant hazard. Let θ be a parameter vector, which is defined as

θ = vec(α1, α2, . . . , αd, β).

The log-likelihood function for the right-censored data is given by

l(θ) =

n∑
i=1

d∑
r=1

δir log hir −
n∑
i=1

d∑
r=1

Tirhir,
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where δir is the indicator that individual i undergoes uncensored death in interval r, and Tir is the

total time that individual i is at risk in interval r. Differentiating the log-likelihood function with

respect to θ,

ℓ(θ) =
∂l

∂θ

=

n∑
i=1

d∑
r=1

δir
1

hir

∂hir
∂θ

−
n∑
i=1

d∑
r=1

Tir
∂hir
∂θ

. (2.2)

Let Ψir = ∂hir/∂θ, and define a weight as wir = 1/hir. Then the Equation (2.2) is

ℓ(θ) =
n∑
i=1

d∑
r=1

δirwirΨir −
n∑
i=1

d∑
r=1

TirΨir. (2.3)

Since Ψir = vec(01, . . . ,0r−1, xi,0r+1, . . . ,0d, zi), where 0 is a p-dimensional zero-vector, the

piecewise hazard function in (2.1) could be rewrite as hir = Ψ′
irθ. By the definition of weight,

wirhir = wirΨ
′
irθ = 1. Now the Equation (2.3) is

ℓ(θ) =

n∑
i=1

d∑
r=1

δirwirΨir −
n∑
i=1

d∑
r=1

TirΨir(wirΨ
′
irθ) . (2.4)

Setting the Equation (2.4) be equal to zero, a WLS estimator is obtained as θ̃ = D−1C, where

C = C(θ) =
n∑
i=1

d∑
r=1

wirδirΨir and D = D(θ) =
n∑
i=1

d∑
r=1

wirTirΨirΨ
′
ir .

The MLE is obtained by iteratively reweighted least squares (IRLS).

2.2. New weights

In the IRLS, the weights are modified to obtain better estimates. When there are a small number

of uncensored deaths in an interval, the WLS estimate might be unstable. The estimates of weights

could blow-up with a very small estimate of hir, and the estimate of hir might also be negative.

Two independent procedures to modify the piecewise constant hazard are suggested in each interval.

One is the averaging of h̃ir = Ψ′
ir θ̃ over neighboring intervals depending on the minimum number

c of uncensored deaths. Let Sr =
∑n
i=1 δir be the number of uncensored deaths in interval r. The

smoothing window size s = s(r) is given by the smallest s (≥ 0) such that
∑r+s
j=r−s Sj ≥ c, where

Sj = 0, j /∈ {1, 2, . . . , d}. The smoothing hazard function is defined as

h̃smir =

r+s∑
j=r−s

h̃ij

r+s∑
j=r−s

I(1≤j≤d)

, (2.5)

where h̃ij = 0, j /∈ {1, 2, . . . , d}. The smoothing hazard function is also modified to avoid negative

and too small hazard by

ĥir = max
{
h̃smir , εh̃smr

}
, (2.6)

where h̃smr is the mean of h̃smir for all individuals at risk in interval r, and ε is a constant to define

updating rate on the mean, h̃smr .
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2.3. Estimates of variance

Uhm et al. (2011) suggested three estimations of variance which were adopted from Huffer and

McKeague (1991). In Equation (2.4) we obtained

ℓ(θ) = C −Dθ,

ℓ
(
θ̃
)
= C −Dθ̃ = 0.

It is rewritten that

ℓ(θ) = ℓ(θ)− ℓ
(
θ̃
)
= D

(
θ̃ − θ

)
,

Var(ℓ(θ)) = DVar
(
θ̃
)
D′,

where D is regarded as a constant. Approximately the variance of θ̂ is defined as

Var
(
θ̂
)
≈ D−1Var(ℓ(θ))D−1,

where D is a symmetric matrix. By martingale properties (see Appendix in Uhm et al. (2011)) the

variance of ℓ(θ) is

Var(ℓ(θ)) = Var

(
n∑
i=1

d∑
r=1

wirΨir
(
δir − TirΨ

′
irθ
))

=

n∑
i=1

d∑
r=1

w2
irΨirΨ

′
irVar

(
δir − TirΨ

′
irθ
)

=

n∑
i=1

d∑
r=1

w2
irΨirΨ

′
irE

(
TirΨ

′
irθ
)
. (2.7)

They suggested three estimates of Var(ℓ(θ)) by

D̂ =

n∑
i=1

d∑
r=1

ŵirTirΨirΨ
′
ir,

Ê =
n∑
i=1

d∑
r=1

ŵ2
irδirΨirΨ

′
ir,

F̂ =

n∑
i=1

d∑
r=1

ŵ2
irTir

(
Ψ′
ir θ̂
)
ΨirΨ

′
ir.

Since the piecewise hazard function was defined as hir = Ψ′
irθ, the expectation in (2.7) could be

estimated by Tirĥir = Tir/ŵir after estimating the weights by ŵir = 1/ĥir. Then the estimate of

D̂ is suggested. Uhm et al. (2011) showed that

E
(
δir − TirΨ

′
irθ
)
= 0

in their Appendix, now we know that

E (δir) = E
(
TirΨ

′
irθ
)
. (2.8)

Therefore δir is replaced with E(TirΨ
′
irθ) in (2.7) as an unbiased estimator for E(TirΨ

′
irθ), and the

estimate of Ê is obtained . Finally, E(TirΨ
′
irθ) is estimated by TirΨ

′
ir θ̂ leading to F̂ .
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Table 3.1. Comparison of MSE’s with n = 1,000 and ε = 0.15 depending on c

c Intervals
Only Smoothing Smoothing+Updating

0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0 0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0

Baseline 36.72 178.66 434.38 626.61 2e-04 0.0018 0.0060 0.0161

100 A(t) 114.01 327.20 710.00 675.80 8e-04 0.0057 0.0186 0.0563

B(t) 21.81 348.98 1068.75 2181.13 4e-04 0.0060 0.0183 0.0374

Baseline 0.3367 0.3677 0.4143 0.4270 2e-04 0.0018 0.0060 0.0160

200 A(t) 1.1823 1.4405 1.5150 6.0675 8e-04 0.0057 0.0185 0.0560

B(t) 0.0174 0.2782 0.8519 1.7386 4e-04 0.0060 0.0182 0.0372

Baseline 0.0874 0.0038 0.0126 0.0231 2e-04 0.0018 0.0060 0.0160

300 A(t) 0.1503 0.0144 0.0404 0.0779 8e-04 0.0057 0.0185 0.0560

B(t) 0.0007 0.0110 0.0336 0.0686 4e-04 0.0060 0.0183 0.0373

Baseline 2e-04 0.0018 0.0060 0.0161 2e-04 0.0018 0.0060 0.0161

400 A(t) 8e-04 0.0057 0.0185 0.0561 8e-04 0.0057 0.0185 0.0561

B(t) 4e-04 0.0060 0.0184 0.0375 4e-04 0.0060 0.0184 0.0375

Baseline 2e-04 0.0018 0.0061 0.0162 2e-04 0.0018 0.0061 0.0162

500 A(t) 8e-04 0.0057 0.0185 0.0562 8e-04 0.0057 0.0185 0.0562

B(t) 4e-04 0.0061 0.0185 0.0378 4e-04 0.0061 0.0185 0.0378

3. Simulations

In this section the effects of modifications are evaluated and the variance estimates are compared

by simulating the model (3.1). Its weights are modified in the two ways. One is the smoothing

hazard function to take the average over neighboring intervals in (2.5), and the other updates the

hazard functions which were very small or negative using the mean of the individual hazard rates

in (2.6). The follow-up time period [0, 1] is partitioned into d = 10 intervals that have even lengths.

It is easy to evaluate the two modifications in each interval using MSE, and compare the variance

estimates by coverage probabilities.

Let X and Z be the constant covariates. The simulation model is given as

h(t) = 2t+ e−tX + 2Z. (3.1)

Setting x = (1, X)′ and β = 2, it is same as the semiparametric model of McKeague and Sasieni

in (1.1). Generate an identically independent random sample from exponential distribution with

mean 1/2 for the covariates of X and Z, and censoring times independently from the exponential

distribution with mean 10/3. Simulate 10,000 times to estimate for the cumulative hazard functions,

and calculate their MSE’s and coverage probabilities from the cumulative simulation model:

H(t) = t2 +
(
1− e−t

)
X + 2tZ,

where t2 is a baseline hazard, and the cumulative hazard functions are A(t) = 1−e−t and B(t) = 2t.

The WLS estimates are calculated with four iterations.

3.1. Evaluation of weight modifications

In Table 3.1 the MSE’s for cumulative hazard functions are suggested depending on the smoothing

constant c in (2.5) at setting ε = 0.15 with n = 1,000. When the smoothing is applied only, the

MSE’s using c = 400 and 500 are better than smaller c’s. All MSE’s increase on time, except

for A(t) with c = 100, and baseline and A(t) with c = 300. Applying smoothing and updating
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Table 3.2. Comparison of MSE’s with n = 1,000 and c = 400 depending on ε

ε Intervals
Only Updating Smoothing+Updating

0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0 0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0

Baseline 2e-04 0.0018 0.0061 0.0162 2e-04 0.0018 0.0060 0.0161

0.15 A(t) 8e-04 0.0057 0.0188 0.0572 8e-04 0.0057 0.0185 0.0561

B(t) 4e-04 0.0060 0.0183 0.0374 4e-04 0.0060 0.0184 0.0375

Baseline 2e-04 0.0018 0.0061 0.0162 2e-04 0.0018 0.0061 0.0161

0.25 A(t) 8e-04 0.0057 0.0188 0.0571 8e-04 0.0057 0.0185 0.0561

B(t) 4e-04 0.0060 0.0184 0.0376 4e-04 0.0060 0.0184 0.0376

Baseline 2e-04 0.0018 0.0061 0.0162 2e-04 0.0018 0.0061 0.0161

0.35 A(t) 8e-04 0.0057 0.0188 0.0570 8e-04 0.0057 0.0185 0.0561

B(t) 4e-04 0.0060 0.0185 0.0377 4e-04 0.0060 0.0185 0.0378

Table 3.3. Comparison of MSE’s with n = 100 and ε = 0.15

c Intervals
Only Smoothing Smoothing+Updating

0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0 0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0

Baseline 2146 1124 2096 5096 0.0022 0.0202 0.0676 0.2116

20 A(t) 16316 8801 15632 24025 0.0084 0.0643 0.2439 1.1019

B(t) 1302 20832 63797 130197 0.0040 0.0648 0.1984 0.4050

Baseline 145 1138 1361 12440 0.0022 0.0200 0.0664 0.2077

30 A(t) 87 264.2 355 6309 0.0086 0.0644 0.2440 1.0838

B(t) 878 14049 43026 87809 0.0040 0.0643 0.1970 0.4021

Baseline 3.4 37.0 46.4 182.0 0.0023 0.0199 0.0666 0.2071

40 A(t) 5.6 58.6 92.7 966.6 0.0088 0.0646 0.2459 1.0886

B(t) 2.8 44.3 135.5 276.6 0.0040 0.0647 0.1982 0.4044

Baseline 140.2 90.1 85.0 99.7 0.0024 0.0199 0.0664 0.2068

50 A(t) 741.0 550.1 560.7 685.0 0.0090 0.0649 0.2452 1.0904

B(t) 4.0 64.4 197.2 402.5 0.0041 0.0651 0.1993 0.4068

Baseline 0.7 4.6 187.2 205.9 0.0025 0.0202 0.0667 0.2073

60 A(t) 9.8 187.4 1103.7 1097.5 0.0093 0.0658 0.2444 1.0927

B(t) 24.3 388.9 1190.9 2430.4 0.0041 0.0659 0.2020 0.4122

in (2.6) together, all cases suggested almost the same MSE’s which are all increasing on time.

Using the smaller constant c = 100, 200, and 300 in smoothing, the updating procedure works

effectively. Using c = 400 and 500, the updating procedure does not provide any more improvement

in MSE. The parameters could change little since they already had enough small MSE’s in the

smoothing procedure only. Using only smoothing, all MSE’s with c = 400 are best, and there are

all smallest MSE’s with c = 200 using both smoothing and updating. In Table 3.2 the MSE’s are

compared depending on ε in (2.6) using n = 1,000 and c = 400. Over all there are almost no

differences among the values in ε. When there are enough uncensored deaths in each interval, using

an adequate constant c provides good estimates even with only smoothing estimates over neighbor

intervals.

In Table 3.3 the MSE’s are given with a small sample size, n = 100 setting ε = 0.15 depending

constant c. The MSE’s are larger and unstable with only the smoothing procedure. With c = 30

MSE’s have a range between 87.2 and 87808.5, and they are all increasing on time. However they

are not increasing always with c = 50 for a baseline and A(t). For A(t) it has the smallest MSE of

5.6 in interval between 0.0–0.1 with c = 40. When there are even small sample size, the MSE’s are

almost the same and stable with any constant c after applying the two modifications of smoothing
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Table 3.4. Comparison of MSE’s with n = 100 and c = 60

ε Intervals
Only Updating Smoothing+Updating

0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0 0.0–0.1 0.3–0.4 0.6–0.7 0.9–1.0

Baseline 0.74 4.61 187.17 205.86 0.0025 0.0202 0.0667 0.2073

0.15 A(t) 9.77 187.43 1103.74 1097.53 0.0093 0.0658 0.2444 1.0927

B(t) 24.30 388.86 1190.88 2430.37 0.0041 0.0659 0.2020 0.4122

Baseline 0.74 4.61 187.17 205.86 0.0025 0.0203 0.0665 0.2076

0.25 A(t) 9.77 187.43 1103.74 1097.53 0.0092 0.0657 0.2420 1.0957

B(t) 24.30 388.86 1190.88 2430.37 0.0041 0.0661 0.2023 0.4129

Baseline 0.74 4.61 187.17 205.86 0.0025 0.0206 0.0668 0.2086

0.35 A(t) 9.77 187.43 1103.74 1097.53 0.0093 0.0659 0.2411 1.1052

B(t) 24.30 388.86 1190.88 2430.37 0.0042 0.0665 0.2037 0.4158

Table 3.5. Range of weights

n c None Only Smoothing Smoothing+Updating

20 (0.1635, 5.5582) (0.1635, 4.5493)

30 (0.1635, 1.7643) (0.1635, 1.7643)

100 40 (−187.7944, 14.3184) (0.1993, 1.5122) (0.1993, 1.5122)

50 (0.2012, 1.3742) (0.2012, 1.3742)

60 (0.2012, 1.3808) (0.2012, 1.3808)

100 (−248.5916, 195.5474) (0.0881, 5.1871)

200 (−462.2076, 168.3407) (0.0890, 4.5063)

1,000 300 (−248.5916, 195.5474) (0.0900, 5.4520) (0.0900, 4.1878)

400 (0.0897, 4.7216) (0.0897, 3.9824)

500 (0.0897, 2.4629) (0.0897, 2.4629)

Notes: Range = (Min, Max), ε = 0.15, and seed = 5264 in R

and updating. When the number of uncensored deaths is not enough large in intervals, the two

procedures should be applied to modify the estimates. Table 3.4 shows that the choice of ε does

not effect the MSE with small sample size, n = 100, like as with n = 1,000.

In Table 3.5 the range of weights after four iterations are given depending on sample size and the

smoothing constant c. A sample set with n = 100 or n = 1,000 is used setting seed be 5264 in R

2.12.1. When no modifications are applied, the weights are too big or even negative with n = 100

and n = 1,000. However only after the smoothing modification, the weights are more stable except

with n = 100 at c = 20, and n = 1,000 at c = 100 and 200. Additionally updating, the ranges of

weights are smaller with a bigger constant c.

3.2. Confidence intervals

A coverage probability of a 95% confidence interval for the cumulative hazard function is considered

to evaluate the variance estimations. In Figure 5.1 the coverage probabilities are displayed for

the three parameters in each column depending on the smoothing constant c (in each row) with

n = 1,000, ε = 0.15 and after both modifications. The coverage probabilities in d = 10 intervals

are connected by line segments for convenient viewing. The coverage probabilities for estimations

of E and F are lower than 95% for the baseline hazard and A(t), and they are getting closer to

95% with the increasing of the constant c. For B(t) they are almost same (in ±0.002%) as 95%.

However the coverage probabilities of D are decreasing on time for baseline hazard and A(t), and

they are worse than the other two estimations for B(t) except with c = 100.
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Table 4.1. Output from R using aareg function for Aalen’s additive regression model

slope coef se(coef) z p

Intercept 4.93e-03 0.005690 4.71e-03 1.21 0.22700

age 9.21e-05 0.000124 6.91e-05 1.80 0.07220

sex −3.22e-03 −0.003980 1.22e-03 −3.25 0.00114

In Figure 5.2 the coverage probabilities based on n = 100 are all worse than the bigger sample

size in Figure 5.1. However with even a small sample size they are also getting better with bigger

constant c, and for the baseline hazard and A(t) the coverage probabilities of D are decreasing on

time. For B(t) the estimation of H is worse than the other estimations.

In Figure 5.3 and Figure 5.4 the coverage probabilities of 95% confidence intervals with only smooth-

ing are suggested depending on the variance estimations and the constant c with n = 100 and

n = 1,000, respectively. They were used the same data sets as that in Figure 5.1 and Figure 5.2.

Based on the bigger sample size of n = 1,000, the coverage probabilities are worse than those in

Figure 5.1 when a small constant c = 100 is applied. However with enough constant of c = 300 and

500, they have little difference when compared to Figure 5.1 as expected from Table 3.1. When the

Figure 5.2 and Figure 5.4 with n = 100 are compared, they are changed little with c = 60. However

with a smaller constant, the coverage probabilities are significantly worse with only smoothing than

with both modifications.

4. Application

The studied model is applied to a data set from the North Central Cancer Treatment Group, which

is a sample data set in R named lung. It has 63 censored data out of 228 observations with 10

variables. In Table 4.1 the lung cancer data set are fitted by Aalen’s additive regression model using

aareg function in R assumed constant effect for the covariates of AGE and SEX. The coefficients of

intercept (or baseline) and AGE are not significant at the 5% significance level, and the estimated

hazard effect of SEX is −3.22e-03 with p-value of 0.00114. In Figure 5.5 the estimates of cumulative

hazard function by the proposed piecewise constant hazard model are plotted with 95% confidence

intervals for the baseline and the two covariates. The estimates in d = 10 intervals are connected

by line segment for convenience, and set c = 30 and ε = 0.15. Arbitrarily the variables of AGE and

SEX are assigned as an effect of time-varying and constant hazard, respectively. For baseline and

AGE the estimates of cumulative hazard function are positive and have an increasing trend most

of the time. However the 95% confidence intervals for both contain a zero, and it means they are

not significant at the 5% level. The estimate of SEX is negative and it is significant. It is the same

conclusions using Aalen’s additive regression model with a constant effect in Table 4.1.

5. Conclusions

The WLS estimator and its modifications on weights are studied based on the partly parametric

version of Aalen’s additive risk model. The follow-up time period is partitioned, and the cumulative

hazard functions are estimated as a piecewise constant in each interval. In the modifications the

estimates of the hazard functions are smoothing over neighboring intervals and updated with the

mean of the individual hazard rates in its interval multiplying a small constant ε to avoid negative or

too much weight on one observation. By simulations the constant c in smoothing and ε in updating
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Figure 5.1. Coverage probabilities based on n = 1,000 for three estimates of variances depending on constants c. Solid lines are
a reference at 95%, dotted lines are for the estimate of D̂, dashed lines are for the estimate of Ê, and irregular dashed lines are
for the estimate of F̂ .
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Figure 5.2. Coverage probabilities based on n = 100 for three estimates of variances depending on constants c. Solid lines are
a reference at 95%, dotted lines are for the estimate of D̂, dashed lines are for the estimate of Ê, and irregular dashed lines are
for the estimate of F̂ .
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Figure 5.3. Coverage probabilities based on n = 1,000 with only smoothing for three estimates of variances depending on
constants c. Solid lines are a reference at 95%, dotted lines are for the estimate of D̂, dashed lines are for the estimate of Ê,
and irregular dashed lines are for the estimate of F̂ .
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Figure 5.4. Coverage probabilities based on n = 100 with only smoothing for three estimates of variances depending on constants
c. Solid lines are a reference at 95%, dotted lines are for the estimate of D̂, dashed lines are for the estimate of Ê, and irregular
dashed lines are for the estimate of F̂ .
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Figure 5.5. Estimates of cumulative hazard functions with 95% confidence intervals for Lung cancer data

are evaluated, and the coverage probabilities are compared among three estimations of variance

with various c and sample size n.

When there are enough uncensored deaths in an interval, only smoothing with a sufficient big

smoothing window size c suggests stable estimates. When we apply only smoothing, the constant

c could be proposed at least 0.4n. Adding updating in (2.6), better estimates are suggested even

with a small constant c after smoothing, and there are no differences among the constant c between

0.15 and 0.35. Based on a small data set, the modifications of smoothing and updating should

be applied together to provide good estimates. When we have a small data set, we should use a

small number of intervals to place more uncensored deaths in each interval. Then the weights are

estimated to be more stable after smoothing and updating. The follow-up time period could be

partitioned into intervals according to the nature of the time-varying effects. In comparing coverage

probabilities of 95% confidence intervals the estimations of E and F suggest good estimates using

sufficient smoothing constant c. The estimates of E and F are getting better with bigger constant

c, and they are similar as expected in (2.8). However the estimates of D become worse with a bigger

c at the beginning and end of the time period.
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