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Abstract

Epidemiologic studies frequently try to estimate the impact of a specific risk factor. The risk difference
and the risk ratio are generally useful measurements for this purpose. When using such measurements for
rare events, the standard approaches based on the normal approximation may fail, in particular when no
events are observed. In this paper, we discuss and evaluate several existing methods to construct confidence
intervals around risk differences and risk ratios using Monte-Carlo simulations when the disease of interest
is rare. The results in this paper provide guidance how to construct interval estimates of the risk differences

and the risk ratios when no events are detected.
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1. Introduction

In epidemiologic research estimates of disease frequency are the basis for the comparison of popu-
lations and the identification of disease determinants. The comparison of two frequencies can be
combined into a single summary parameter that estimates the association between an exposure and
the risk of developing a disease. This can be accomplished by calculating the risk difference and
the risk ratio. The risk difference(RD) is defined as the difference between the risk in the exposed
and non-exposed groups and provides information about the absolute effect of the exposure or the
excess risk of disease in those exposed over those non-exposed. The RD describes the absolute
change in risk attributable to the exposure and is useful in answering the question how much of the
disease can be prevented if the exposure in question is eliminated. In epidemiology a more frequent
measure of the difference between two proportions is their ratio referred to as the risk ratio, rate
ratio, or relative risk, depending on the type of study. A risk ratio(RR) or relative risk is the ratio
of the incidence of disease in the exposed group divided by the corresponding incidence of disease
in the non-exposed group.

Both RD and RR can be used to determine the existence and the strength of an association between
exposure and outcome in cohort studies but are not appropriate for the analysis of case-control
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studies. Instead, the odds ratio(OR) is used in case-control studies, another measurement of the
association between exposure and outcome. The OR is often referred to as approximate relative
risk because the OR can be used as an estimate of RR when the incidence of disease is very low.

Suppose x1 and x2 are disease frequencies of two independent populations with sizes n1 and ne
respectively. The RD and the RR are defined by p1 — p2 and p1/p2 respectively where p1 and p2 are
the probabilities of disease in two populations. The standard methods of constructing confidence
interval(CI) of RD and RR are based on normal approximation, these are used widely in most
of statistical software packages by non-statisticians. Along with the computational simplicity, the
CI of RD has an apparent advantage of producing interval centered on the point estimate, thus
resembling one for the mean of a continuous normal variate. In addition, the CI of RR generally
has the asymptotic normality of the natural logarithm of an observed ratio.

However, when 1 = z2 = 0, we have a problem with using the interval estimates of RD and RR.
The CI of RD is zero length, and the CI of RR is not defined. The situation in which no cases
occur in a binomial experiment arises quite frequently when p; and ps are small. Examples are
an epidemiologic study where disease of interest is a rare event and a diagnostic test in which it
is common to deal with a small false negative rate (the probability of a disease individual testing
negative). Newcombe (1998a, 1998b) has studied interval estimation of single proportion and the
difference of two independent proportions. Newcombe (1998b) examined risk differences(RDs) in
symmetry and aberrations as well as degree of coverage based on various sample parameter space
points. Two types of aberrations are classified based on the location of the interval and the expected
interval width as tethering and overt overshooting. Tethering occurs if either the calculated upper
and lower limits coincide with the point estimate. Overt overshooting occurs if either calculated
limit is outside the boundaries. These aberration problems can occur in the analysis of rare events.
Various approaches to interval estimation of the RD have been proposed by Santner and Snell (1980),
Beal (1987), Mee (1984), Miettinen and Nurminen (1985) and Newcombe (1998b). Approaches to
RR estimation have been evaluated by Noether (1957), Walter (1975), Katz et al. (1978), Aitchison
and Bacon-Shone (1981), Koopman (1984), Mee (1984), Miettinen and Nurminen (1985), Gart and
Nam (1988), and Ewell (1996).

All of these studies focused on improving the performances of interval estimates in studies with a
small sample size. Chan (1998) proposed exact tests of equivalent and efficacy that are desirable
for studies with small sample sizes. To our knowledge, our simulation experiment is the first
comparative study for interval estimates of the RD and the RR with small probabilities of the
disease case.

This paper discusses interval estimates, the CI of RD and RR, when there is a small probability of
a disease under investigation to occur. In contrast to the p-value the use of the CI to interpret a
result has the advantage that the CI is measured with the same scale of data while the p-value is
a probabilistic measurement. The CI conveys information about magnitude and precision of effect.
A point estimate is of limited value without some indication of its precision. This is provided by
the CI (Newcombe, 1998a).

Our paper is divided in 4 sections. In the following Section 2, we describe interval estimates for
RD and RR. In Section 3 examples are shown to highlight problems. Simulation results using
Monte-Carlo methods are provided in Section 4. The findings are discussed at the end of the paper.
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2. Various Interval Estimates

2.1. Risk difference

Newcombe (1998b) evaluated several existing methods to estimate the CI for the difference between
two proportions. He concluded that the profile likelihood based method produces the best coverage
probabilities, though it may be difficult to calculate for a large denominator. The Wilson score
method is known to have good coverage probabilities for small and medium size data. In this
subsection, we will describe four RD interval estimates (that include profile likelihood based and
Wilson score method) that in most circumstances perform well. A simple asymptotic method used in
most software packages (the Wilson score method, the exact method, and the Bayesian probability
method) are discussed here. When the number of observations is small, the exact method has the
same logic framework as the profile likelihood based method familiar to StatXact users. The exact
method of StatXact is used in this paper as an alternative of profile likelihood based method. The
Bayesian probability method is included because it yields the interval estimates of a proportion in a
one sample problem close to the exact confidence interval when no cases are observed (Louis, 1981).

1. Normal approzimation(NA)

The interval estimate of RD based on the normal approximation is given as

(1 — o) * 25 \/151(1 — p1) I p2(1 — p2) 7 (2.1)

n1 n2

where p1 = z1/n1 and p2 = x2/n2. This method gives good results for large prospective studies,
while these limits yield an interval of (0,0), a tethering when z1 = z2 = 0.

2. Wilson score method(WS)
The 100(1 — a)% confidence interval (L, U) of the Wilson score method is given as

L=p1—p2—6, U=p1—p2+te (2.2)
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l1 and wu; are the roots of |p1 — z1/n1| = 2a/24/P1(1 —p1)/n1, and l> and up are the roots of
|p2 — x2/n2| = zay2+/p2(1 — p2)/n2 (Wilson, 1927). When x1 = 22 = 0, they are 0 = I3 < w1 <1
and 0 = l2 < u2 < 1 and § and e become uz and uy respectively. Therefore, (L,U) of the Wilson

where

score method have no aberrations.
3. Ezact method(EX)

Let 6 = p1 — p2 and ¥ = p2. Consider a test of Ho(z) : p1 — p2 = x versus H1 : p1 — p2 # . We
reject Ho(x) when |p1 — p2 — x| is larger than the critical value Cy. If we know the true value of v,
then the critical value C, is calculated for a given level a by

@

Pr{lp —p2 — 2| > Colf = 2,9} = 5 (2.3)
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Now, we can construct the exact 100(1 — «)% confidence interval (L, U) by

L = inf{z : Ho(z) is not rejected},
and

U = sup{x : Ho(z) is not rejected}.

See Bickel and Doksum (1977, p.155). However, we don’t know ?. One simple remedy for this prob-
lem is to eliminate nuisance parameter 1 by taking supremum over its range suggested by Santner
and Snell(1980). Berger and Boos(1994) suggested a modified method of searching supremum and
eliminating in a restricted range. As a first step, an exact 100(1 — v)% intervals for p; and p2 are
computed. Denote those intervals as Ay = [l1,u1] and Az = [l2, u2] respectively. Assume that the
event € : (p1,p2) € A1 X As is true. Then 100(1 — o) % exact confidence interval (L, U) in restricted
range (2 — u1,u2 — l1) is given that satisfies the conditions

N ~ «
sup Pr(p1 —p2 < z|L =x,7) = = — 7,

Yee* 2

~ ~ «
sup Pr(pl — P2 2 $|U':1$,¢Of: 5’47W7
WYee*

where " = {p2 : max(l2,l1 — z) < p2 < min(ug,u1 — z)}.

The intervals (l;,u;), (¢ = 1,2) are calculated within (0,1) from the two independent binomial
distributions and the interval (L, U), as mentioned, is always in restricted range (I2 — u1,u2 — l1),
which is narrower than boundary (—1,1). This modified method can provide stability, narrower CI,
and faster execution by cutting of regions near the extremes of the parameter space.

4. Bayesian probability method(BP)

The Bayesian probability interval of RD is constructed as follows. Let 7(p1,p2) be the prior distri-
bution of (p1,p2). Then the posterior distribution is given by

ny—x, x

m(p1, p2lz1, 2) o< pI* (1 — p1) p5° (1 —p2)"* " "7 (p1, p2)-

Let 6 = p1 — p2 and 9 = p1 + p2, and let 7(0, v|z1, z2) be the corresponding posterior distribution
of 6 and v, which can be obtained by using the variable transformation technique. Now, the equal
tail 100(1 — )% probability interval has the form of (L, U) which satisfies

(%
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[ [ nto.01x1 xa)dwas =
—-1J0

See Gelman et al. (1995). In practice, we can obtain L and U by using a simple Monte-Carlo
method as follows. First, we generate p1 and p2 from their posterior distributions and calculate
0 = p1 —p2. We repeat this several times to get many s generated from the posterior distributions.
Finally, L and U are obtained from the histogram of s.
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2.2. Risk Ratio

Gart and Nam(1988) grouped several RR interval estimates into three categories based on their
mode of derivation, which are the normal approximate methods, the Fieller-like method, and the
likelihood based method. In this subsection, we briefly describe these three methods along with the
Bayesian probability method.

1. Normal approximation(NA)

There are two approaches to construct the CI of RR; the delta method and the exponential trans-
formation. The delta method is to compute the CI of RR using delta rule to derive an estimate of
standard error(SE) while the exponential transformation method is to transform RR exponentially
to approximate normal, then transformed end-points of the CI in the natural parameter space.
Asymptotically, these two are equivalent; however, they will differ for real data.

The 100(1 — @)% CI by using delta method is

le<1m 1—?1+1—?2), (24)
P2 2 nip1 n2p2

where p1 = z1/n1 and pa = x2/no.

In practice, the CI obtained by transforming the end-points has some intuitively desirable properties,
for example, they do not produce negative RR. In general, we also expect the estimates to be more
normally distributed. The 100(1 — «)% approximate CI of RR used in this paper is one using the
exponential transformation method and is given as

(2.5)

L=p 1_?2}
nip1 na2p2

exp {(bg(ﬁl) — log(p2)) * 2¢

where p1 = x1/n1 and P2 = x2/n2. The limits are not defined when either or both of z1 and x4 are
Z€ero.

2. Fieller-like method(FL)

Denote ¢ = p1/p2. The Fieller-like interval uses the statistic T' = <f> — ¢ where <f> = p1/P2. It can be
shown that T is asymptotically normal with variance

(T) = ¢*q2 n P*a

var .
na2p2 nip1

p1 in this variance formula is substituted by ¢p2 and ps is estimated by po. Finally, the 100(1 — )%
confidence interval using this estimated variance V (T') is given as the solution of following quadratic
equation;

(6~ ¢)2 = V(D). (2.6)

This Fieller-like interval estimate is proposed by Noether (1957). A different type of Fieller-like
interval estimates for RR based on the statistic 7" = p; — ¢p2 has been proposed by Katz et al.
(1978). If both x1 and z2 are greater than zero, the equation always yields real roots. However,
when x2 = 0 the variance and the point estimate (;AS are not defined. When z; = 0 and x5 # 0, one
limit becomes zero, which is a tethering and the other limit may be less than zero. When p» is very
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small, these roots may be complex or may be exclusive such like disjoint confident interval, that is,
(0,a) and (b, c0) where b > a.

3. Likelihood based method(LB)

Miettinen and Nurminen (1985) have proposed a method that uses the maximum likelihood esti-
mator(MLE) of the nuisance parameter ps, for a given value of ¢ = p1/p2. Let p2 be the MLE of ps
given ¢ and let p1 = ¢p2. The MLE of p2, p2 is the appropriate solution to the quadratic equation

aps + bpa + ¢ =0,

where a = (n1 +n2)¢,b = —[(x2 + n1)d + x1 + n2], and ¢ = x1 + x2. They started with the statistic
T = p1 — ¢p2 and estimated its variance by p1Gi/n1 + d)Qﬁg(jz/ng. Then, they obtained the limits of
100(1 — )% confidence interval as the roots to the equation

(Pr — dp2)’ (n1+nrl) _,
(P1G1)/n1 + (¢%P2G2) /2 \ nmai+nz )

(2.7)

[N

Koopman (1984) derived the same confidence interval from different derivation. Gart and Nam
(1988) showed Miettinen and Nurminen method and Koopman’s method are identical. The only
difference is that Miettinen and Nurminen use a variance correction, so the resulting limits are
slightly wider than those given by Koopman’s formulation. When x; and x> are zero, the variance
is not defined because the MLE of the nuisance parameter p2 becomes zero. If either x; or x2 is
zero, only one limit is found because the left term of (2.7) does not be quadratic for ¢ > 0.

4. Bayesian probability method(BP)

The Bayesian probability approach for RR is very similar to one for RD. First, we calculate the
posterior distribution of (p1, p2) and obtain the posterior distribution of p1 /p2 by use of the variable
transformation technique. Finally, we get limits of the equal tail 100(1 —«)% probability interval as
the upper and lower 100(c/2) percentiles of the posterior distribution of p1/p2. In addition, these
percentiles can be calculated easily using the simple Monte-Carlo method as is done for RD.

3. Examples

In this section, we view when and which type of problems can be faced in each of the methods
described above through examples. Table 3.1 and Table 3.2 show the eight methods using several
combinations of 1, z2,n1, and na. Table 3.1 shows 95% limits of RD. The rows (1) and (2) represent
no zero cells(NZ) with rare events, (3) to (6) depict one zero cell(OZ), and (7) and (8) are two zeros
in the same row(RZ). (9) and (10) are general cases having moderate numbers. As shown in (9)
and (10), if the number of events is moderate, all methods are similar although there are differences
in size; the CI of the exact method are very broad while the Wilson score method and the Bayesian
probability method are relatively narrow. The results are quite different when events are rare.
Especially, when both events are zero, x1 = 0 and x2 = 0, the normal approximation method
cannot calculate limits due inappropriate tethering.

Table 3.2 shows examples of RR. Rows (1) to (4) represent no zero cells(NZ) with rare events, (5)
to (8) are one zero cell(OZ), and (9) and (10) are results on a general setting like in the Table
3.1. Fieller-like method seems to have a problem when events occur rarely. Most of its lower limits
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Table 3.1. 95% confidence intervals of RD for selected contrasts

Contrast NA WS EX BP
(1)  3/80-1/50 —0.0394 0.0744  —0.0709 0.0865 —0.1160 0.1212 —0.0721  0.0837
(2)  2/60-1/60 —0.0391  0.0724  —0.0591 0.0981 —0.1003 0.1394 —0.0486  0.0946
(3)  0/72-2/98 —0.0484 0.0075  —0.0713  0.0323 —0.0923 0.0573 —0.0595  0.0235
(4)  2/52-0/64 —0.0138  0.0907  —0.0246 0.1298 —0.0614 0.1746 —0.0221  0.1175
(5) 0/100-3/100  —0.0634  0.0034  —0.0845 0.0119 —0.1044 0.0307 —0.0802  0.0036
(6)  1/45-0/45 —0.0208 0.0652  —0.0585 0.1156 —0.1093 0.1680 —0.0473  0.0912
(7)  0/48-0/64 0.0000"  0.0000f  —0.0566  0.0741 —0.0871 0.1149 —0.0477  0.0591
(8)  0/75-0/75 0.0000T  0.0000f  —0.0487  0.0487 —0.0720 0.0720 —0.0443  0.0390
(9)  6/50-9/30 —0.3671  0.0071  —0.3698 —0.0019 —0.4706 0.0946 —0.3774 —0.0069
(10) 54/100-20/100  0.2147  0.4652 0.2082  0.4555 0.1705 0.4897 0.2065  0.4547
t: inappropriate tethering
Table 3.2. 95% confidence intervals of RR for selected contrasts
Contrast NA FL LB BP
(1)  (1/10)/(2/20) 0.1025  9.7504 < 0.0000% 0.1694 0.1335 6.9106 0.1574 6.2672
(2)  (3/80)/(1/50) 0.2005  17.5327 < 0.0000%8 0.4728  0.2763 13.0177 0.2695 9.7889
(3)  (1/20)/(1/20) 0.0670  14.9046 < 0.0000% 0.1603  0.1064  9.3925 0.1083  7.5447
(4)  (1/200)/(2/200)  0.0629  15.8777 < 0.00005 0.1590  0.1046  9.5594 0.1098 9.5692
(5)  (0/72)/(2/98) 0.0000"  0.0000" < 0.0000%8 0.0000 0.0000f 0.0000f 0.0133% 3.5753
(6)  (0/10)/(2/15) 0.0000"  0.0000T < 0.00008 0.0000  0.0000T 0.0000T  0.0124% 2.9579
(7)  (0/100)/(3/100)  0.0000f  0.00007 < 0.0000% 0.0000  0.0000" 0.0000"  0.0084* 1.6148
(8)  (0/20)/(1/20) 0.0000  0.00007 < 0.0000%8 0.0000 0.0000f 0.0000f  0.0119% 5.0990
(9)  (6/50)/(9/30) 0.1580  1.0123 0.1737 1.1836  0.1613  0.9894 0.1734 0.9833
1.7533  4.1577 1.8382 4.4822  1.7786  4.1951 1.8004 4.1806

(10) (54/100)/(20/100)
t: inappropriate tethering, §: overt overshooting, I: point estimate out of limits

show overt overshooting. OZ show inappropriate tethering for normal approximation method and
likelihood based method. However, all Bayesian probability methods have both lower and upper
limits although its point estimate is out of estimated interval limits. We discuss this more in detail
in the last section.

As shown in the examples, neither RD nor RR has any problem for all methods with a moderate
number of events. Only a rare event causes problems, which implies we have to choose a method
with caution when handling rare events. We examine eight methods for RD and RR in the next
section through Monte-Carlo simulations.

4. Simulations

We present the results of the Monte-Carlo simulation to compare the performances of the afore-
mentioned interval estimates of RD and RR when the probability of the disease is small. For RD,
we employed the study design used by Newcombe (1998b). Let § = p1 — p2 be a parameter of
interest and 1 = (71 + m2)/2 be a nuisance parameter. 10,240 parameter space points are chosen
from sample sizes m = 50,60, ...,200, n = 50,60,...,200. For each (m,n) pair, 40 (¢,0) pairs
are generated randomly by 6 = A{0.1 — |2¢ — 0.1]} and ¥ ~ U(0,0.1) and A ~ U(0,1) so that
0<p1 <0.1 and 0 < py < 0.1 are maintained. A total of 10,000 samples are generated in each set
of the parameter (¢, 6). For RR, we used the same design as the RD except that we generated p;
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Table 4.1. Estimated coverage probabilities for 90%, 95%, and 99% Cl of RD

Method 90 % coverage 95% coverage 99% coverage
Min. Mean Max. Min. Mean Max. Min. Mean Max.
NA 0.1202 0.1204 0.8951 0.9597 0.85148 0.9196 0.1204 0.93349 0.9938
WS 0.8681  0.9395 0.9693 1.0000 0.92657  1.0000 0.9888  0.99604 1.0000
EX 0.2285 0.9755  0.99469 1.0000 0.84842  1.0000 0.9953 0.99913 1.0000
BP 0.8145 0.9169 0.9615 1.0000 0.91897  1.0000 0.9827  0.99261  1.0000

Table 4.2. Estimated average Cl size of RD

Method 90% 95% 99%
NA 0.08773 0.10452 0.13732
WS 0.10045 0.12429 0.17565
EX 0.11093 0.13410 0.17937
BP 0.09724 0.11755 0.15954

Table 4.3. Estimated coverage probabilities for 95% Cl of RD for parameter space points(number of sample points)
r] = X9 1 > T p1 < 0.05,p2 < 0.05 p1 > 0.05,p2 < 0.05 p1 > 0.05,p2 > 0.05

Method = 640) (4800) (2672) (4915) (2653)
NA 0.89626  0.90775 0.78025 0.93135 0.94382
ws 097032  0.97171 0.98921 0.96607 0.95522
EX 0.99426  0.99472 0.99896 0.99429 0.99114
BP 0.96336  0.95973 0.97860 0.95704 0.95283

and p2 from U(0,0.1) and U(0,0.1) respectively for simplicity.

To evaluate performances, we measure the coverage probability of interval estimates and compare
with the nominal level. Coverage probabilities are compared differently depending on the observed
proportions and the sample sizes.

In the Bayesian probability method, independent uniform distributions are used as the prior dis-
tributions of p; and ps2 to represent prior ignorance. Then, a posteriori p1 and p2 are independent
beta distributions with parameters (z1 + 1,m1 — z1 + 1) and (z2 + 1,n2 — z2 + 1) respectively.

4.1. Risk difference

Table 4.1 displays the estimated coverage probabilities under 95%, 90%, and 99% of the nominal
confidence levels. All but the normal approximation method(NA) maintain nominal levels. The
mean of the coverage probabilities of the Wilson score method(WS) was similar to the Bayesian
probability method(BP) but the BP has a shorter range than the WS. The NA cannot be compared
with others because of the tethering problem. The BP results in the most narrow Cls, while the
Exact method(EX) is most conservative. Figure 4.1 shows box plots of 95% coverage probabilities
of the four methods. The horizontal line in the figure shows 95% nominal level. NA had many
outliers; however, other methods resulted in short ranges. BP and WS are close to the nominal
level; EX is more conservative than the others are. When we divided the results by subsets of
parameters, as shown in Table 4.3, BP shows very stable coverage probabilities, however, EX and
WS show higher coverage probabilities than the nominal level except when both proportions are
larger than 0.05 as in the last column. In addition, NA shows lower than the nominal level except
when both proportions are larger than 0.05.
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Figure 4.1. Box-plots of 95% coverage probabilities for RD

Table 4.4. Estimated coverage probabilities for 95%,90%,and 99% CI of RR

Method 90% coverage 95% coverage 99% coverage
Min. Mean Max. Min. Mean Max. Min. Mean Max.
NA 0.0000 0.83016  0.9388 0.0000 0.87153 0.9775 0.0086  0.89986  0.9990
FL 0.0000 0.69528 0.9309 0.0000 0.63935 0.9570 0.0000 0.46511  0.9860
LB 0.0000 0.81810 0.9184 0.0000 0.86080 0.9601 0.0000 0.89502  0.9941
BP 0.7342  0.90360  0.9308 0.8532  0.95093  0.9680 0.9364 0.98931  0.9949
4.2. Risk ratio

Table 4.4 shows the coverage probabilities for the 95%, 90%, and 99% nominal levels. Since in many
cases the simulation resulted in where RR cannot be defined, we treat undefined case as zero point
estimates and zero size. Normal approximation(NA), Fieller-like method(FL), and likelihood based
method(LB) show zero minimum coverage because we treated and undefined case as zero and have
wide ranges accordingly, whereas the Bayesian probability method(BP) is very stable throughout
the range and maintains the nominal level in mean coverage. Table 4.5 shows a very large average
size for the BP; however, it does not perform badly because others show a small average CI size due
to tethering or overt overshooting. Figure 4.2 represents box plots for the four methods. All are
skewed and have outliers shown as shaded parts in the figure. For FL, the box extends for almost
the whole range and outliers are truncated by the zero value. Further, mean coverage probabilities
of FL in Table 4.4 are lower than the nominal levels. In addition to the fact that limits do not exist
for 1 and/or 2 = 0, FL appears uncommon limits when z, /o is large or when po is small. For
rare events, BP performs well while others perform badly.
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Table 4.5. Estimated average length of RR
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Method 90% 95% 99%
NA 9.3393 12.6148 22.245
FL 31.9641 38.6972 95.166
LB 7.8933 10.1417 15.350
BP 26.5618 50.2463 227.614
Table 4.6. Estimated coverage probabilities for 95% Cl of RR by subsets (number of sample points)
1 = X2 x1 > T2 p2 < 0.05 p2 > 0.05
Method (640) (4800) (5120) (5120)
NA 0.87212 0.84670 0.78272 0.96035
FL 0.63865 0.56388 0.39281 0.88590
LB 0.86086 0.83787 0.77212 0.94948
BP 0.95085 0.95034 0.94911 0.95276
1.0
0.8
0.6
0.4
0.2
0.0 —

T
FL

Figure 4.2. Box-plots of 95% coverage probabilities for RR

Table 4.6 shows performances by subsets. We divided subset of parameters only by p2 because
the proportion of denominator is more sensitive to the results. However, regardless of subsets, the
results are similar to those in Table 4.4. The results are improved when p2 is greater than 0.05.

5. Discussion

We performed Monte Carlo simulations to evaluate various interval estimates of RD and RR when
the probability of the disease to occur is small and when it is proposed for use with the Bayesian
probability method. Our simulation results showed that the Wilson score method, the exact method,
and the Bayesian probability method work well for RD and the normal approximation method, the

likelihood based method, and the Bayesian probability method perform well for RR.
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Table 5.1. Estimated coverage probabilities of RR by adding 0.5 for ZERO case

Method 90% coverage 95% coverage 99% coverage
Min. Mean Max. Min. Mean Max. Min. Mean Max.
NA 0.7725 0.92332  0.9654 0.9061 0.96566 0.9914 0.9490 0.99411  1.0000
FL 0.0000 0.69764  0.9629 0.0000 0.64082 0.9754 0.0000 0.46895 0.9885
LB 0.2805 0.90797 0.9484 0.7032 0.95341 0.9764 0.9016 0.98903 0.9971
BP 0.7342  0.90360 0.9308 0.8532  0.95093 0.9680 0.9364 0.98931 0.9949

Table 5.2. Estimated average Cl size of RR by adding 0.5 for ZERO case

Method 90% 95% 99%
NA 30.0145 45.3518 101.972
FL 15.5881 16.4862 59.787
LB 22.2492 29.2557 45.986
BP 26.5618 50.2463 227.614

The normal approximation method of RD should be avoided when the probability of the disease
to occur is small. The exact method is very conservative even when the nuisance parameter is
eliminated on a restricted range. The Wilson score method performed well along with the Bayesian
probability method, but it is more conservative than the Bayesian probability method. In the RR
results, only Bayesian is recommended for inference of RR with rare events.

Regarding aberrations, we showed some examples of tethering and overt overshooting and examined
them. The normal approximation method shows tethering for RD and Fieller-like method has many
overt overshootings for RR. The Bayesian probability method for RR has an aberration resulting
in some point estimates are out of estimated interval limits. The Bayesian probability method
is adjusted by prior distribution. It can be used in zero event situations by adding 0.5 effect for
absent cases. Four methods are compared in Table 5.1 and Table 5.2 for RR only. The tables
show coverage probabilities and mean CI sizes when 0.5 is added for absent event. The results
for the Bayesian probability method is the same as in the Table 4.4 and Table 4.5. The normal
approximation method and the likelihood based method are improved. In contrast, the Fieller-like
method does not improve by adding 0.5. The results of the likelihood based method are comparable
to those of the Bayesian probability method in the coverage probabilities; however, the likelihood
based method is not time-efficient because of iterative way to find limits

The Bayesian probability method showed very good performance for both RD and RR. It does
not depend on the balance of sizes between two samples and on the variety in true values of the
parameter. Besides the coverage probabilities and interval size, computational simplicity is an im-
portant factor in the evaluation of interval estimates. From the computational point of view, we
recommend the Bayesian probability method since the calculation of the Bayesian probability in-
tervals only requires random number generation that can be easily done with standard software and
the interval estimates of RD and RR can be constructed simultaneously using the same generated
random numbers.
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