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Abstract

An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled

data subject to false-positive error. The performance of the test is compared with the likelihood-based tests.

It is shown that the Agresti-Coull test has many desirable properties in that it can approximate the nominal

significance level with compatible power performance.
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1. Introduction

The Wald interval using the maximum likelihood estimate of the binomial parameter is considered

the standard method for the interval estimations of binomial proportions; however, the erratic

behavior of the coverage probability of the Wald interval has been recognized in various literature,

see for example, Blyth and Still (1983), Agresti and Coull (1998), and Brown et al. (2001). In

particular, Brown et al. investigated the unsatisfactory coverage properties of the Wald interval in

detail, and Agresti and Coull showed that an improved interval for the parameter of a binomial

distribution could be obtained by “adding two successes and two failures” to the observed counts

and then using the standard method.

This strategy works quiet well in various sampling designs as well as in the 1-group design. For

instance, Agresti and Caffo (2000) examined the interval estimation for the difference of two bi-

nomial proportions, and concluded that the strategy performs about as well as the best available

methods in this 2-group design, see also Agresti and Min (2005). The more general problem of in-

terval estimation for a linear function of binomial proportions was considered by Price and Bonett

(2004). Unlike the 1-group and the 2-group cases for which competitive alternatives exist, they also

concluded that the Agresti-Coull’s method would provide effective confidence intervals. In addition,

Lee (2007) investigated the performance of the Agresti-Coull type confidence interval in a double
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sampling design subject to false-positive misclassification. He compared the performance of the

Agresti-Coull type confidence interval with the original Wald interval and the confidence interval

given by Boese et al. (2006). Again, the Agresti-Coull type interval is comparable to or even better

than the Wald interval in terms of the closeness of coverage probability to nominal level.

The interval estimation is closely related to the hypothesis test. In this paper, we will provide

a simple but effective test for the difference of population proportions with double sampled data

subject to false-positive classification relying on the Agrest-Coull’s argument.

A double sampling scheme on binary observations occurs when the cost of the precise test is ex-

pensive. To reduce the cost, a large sample is classified by an inexpensive but fallible device and a

subsample is classified by a supplementary inerrant device.

A significant amount of literature concerned with the inference on the population proportion in the

double sampling scheme, see Tenenbein (1970), Geng and Asano (1989), York et al. (1995), Moors

et al. (2000), Barnett et al. (2001), Raats and Moor (2003), Boese et al. (2006) and Lee (2011). In

particular, Lee (2011) showed that the Agresti-Coull’s approach can be justified by the Bayesian

paradigm.

Note that among the false-positive and false-negative errors, only one type error model occurs

frequently in real world. For example, Moors et al. (2000) and Perry et al. (2000) analyzed an

auditing data and blood testing data, respectively, where each data has only one type of error. the

false-positive error model can represent the one type of error model, since the role of false-positive

error is switchable to the false-negative errors. In this paper, we will apply the Agresti-Coull’s

approach to test the difference of two proportions with double sampled data subject to false-positive

error. The power performance of the proposed test is compared with well-known likelihood based

tests.

In Section 2 and Section 3, we will briefly describe the model and tests considered in this paper.

We also give an example for the tests. The comparison of tests is shown in Section 4 with some

conclusions.

2. Two Sample False-Positive Misclassification Model

A double sampling scheme consists of two stages of sampling. A sample of size N is selected at

random from the population of interest and a fallible device classifies each unit in the sample, and

then a subset of size n is selected from the initial sample. Each unit in the subsample is tested by

an inerrant device. Thus, a unit in the subsample is tested by both the inerrant and the fallible

device.

For each unit tested by the inerrant device, let Ti = 1, if ith unit is recorded positive (or a success),

and Ti = 0, if otherwise. Likewise, for each unit tested by the fallible device, define Fi = 1, if ith

unit is classified as positive, and Fi = 0, if otherwise. The proportion of success p can be written as

p = Pr [Ti = 1 ] ,

and the false-positive error rate is

ϕ = Pr [Fi = 1 |Ti = 0 ] .

The false-negative error rate, Pr [Fi = 0|Ti = 1], is assumed to be zero in this model. Thus, each

unit in the subsample belongs to one of three mutually disjoint categories {(t, f)|(0, 0), (0, 1), (1, 1)}
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with probabilities (1 − p)(1 − ϕ), (1 − p)ϕ and p, respectively. Let ntf be the observed count in

(t, f). N − n units are tested by only fallible device. Among these units, let x be the number of

units tested positively, and y = N − n− x. Define π = Pr [Fi = 1] = p+ (1− p)ϕ.

Assuming each unit is tested independently, the joint likelihood of p and ϕ is given by

L(p, ϕ;Y) = C(Y) [(1− p)ϕ]n01 pn11πx(1− π)n00+y

where C(Y) = n!/(n00!n01!n11!)
(
N−n
x

)
and Y represents (n00, n01, n11, x, y).

The maximum likelihood estimate of p and ϕ were obtained by Tenenbein (1970) as:

p̂ =
n11

n01 + n11

x+ n01 + n11

N
and ϕ̂ =

n01

n01 + n11

x+ n01 + n11

N(1− p̂)
(2.1)

with

V̂ar(p̂) =
p̂ q̂

n
−
(
1

n
− 1

N

)
n11

n11 + n01
p̂(1− π̂) (2.2)

where q̂ = 1− p̂ and π̂ = (x+ n01 + n11)/N .

A two-sample false-positive misclassified data consists of two data sets Y1 = (n100, n101, n111, x1,

y1) and Y2 = (n200, n201, n211, x2, y2), where each Yi is sampled from L(pi, ϕi;Yi) independently.

Let λ = p1 − p2. Then, the joint likelihood of λ and Θ = (p2, ϕ1, ϕ2) can be written as:

L(λ,Θ;Y1,Y2) = L(λ+ p2, ϕ1;Y1)L(p2, ϕ2;Y2). (2.3)

3. Tests

In this section, we will define an Agresti-Coull type test for testing H0 : λ = λ0 against H1 : λ ̸= λ0

in the two sample false-positive misclassification model. In addition, we will review likelihood-based

tests. For this purpose the profile likelihood and the information are important in what follows.

3.1. Profile likelihood and information

The profile likelihood for λ and the restricted information are the keys of many likelihood-based

tests. Thus, the calculation of them is essential in what follows.

Taking logarithm of (2.3), we have the full log-likelihood,

ℓ(λ,Θ) = (n100 + n101 + y1) log(1− λ− p2) + n111 log(λ+ p2) + (n100 + y1) log(1− ϕ1)+

n101 log ϕ1 + x1 log π1 + (n200 + n201 + y2) log(1− p2) + n211 log p2+

(n200 + y2) log(1− ϕ2) + n201 log ϕ2 + x2 log π2,

where π1 = (1 − λ − p2)ϕ1 + (λ + p2) and π2 = (1 − p2)ϕ2 + p2. Profile log-likelihood ℓP (Θ;λ) is

the full log-likelihood regarding λ as a given value.

Note that, given λ ∈ (−1, 1), the maximum of the log-profile likelihood is ℓP (p̂
λ
2 , ϕ̂

λ
1 , ϕ̂

λ
2 ;λ) where

p̂λ2 , ϕ̂
λ
1 and ϕ̂λ2 are the solutions of following profile likelihood equations:

0 = −n100 + n101 + y1
1− λ− p2

+
n111

λ+ p2
+

(1− ϕ1)x1
π1

− n200 + n201 + y2
1− p2

+
n211

p2
+

(1− ϕ2)x2
π2

, (3.1)
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0 = −n100 + y1
1− ϕ1

+
n101

ϕ1
+

(1− λ− p2)x1
π1

, (3.2)

0 = −n200 + y2
1− ϕ2

+
n201

ϕ2
+

(1− p2)x2
π2

. (3.3)

Note that when all observed counts are greater than zero, p̂λ2 lies in interval (max{−λ, 0},min{1−
λ, 1}), which in turn results in ϕ̂λ1 ∈ (0, 1) and ϕ̂λ2 ∈ (0, 1). For this case, one may refer Lee (2010)

for solving the nontrivial profile equations. However, when some observed counts are zero, then

the full likelihood or the profile likelihood does not admit unique maximum. For instance, when

n211 = 0 or n201 = 0, p̂2 or ϕ̂2 is undefined. A customary remedy to prevent the undefined problem

is to add a small number, say 1.e-5, to null observed counts; see for example Boese et al. (2006).

Thus we will add a small number when necessary for the calculation of likelihood-based confidence

intervals.

Let p̂λ1 = λ + p̂λ2 , π̂
λ
1 = (1 − p̂λ1 )ϕ̂

λ
1 + p̂λ1 and π̂λ2 = (1 − p̂λ2 )ϕ̂

λ
2 + p̂λ2 . Then the adjusted observed

information for λ is

Jλλ(λ,Θ) = Jλλ − (Jλp2 , Jλϕ1 , Jλϕ2)

Jp2p2 Jp2ϕ1 Jp2ϕ2

Jp2ϕ1 Jϕ1ϕ1 Jϕ1ϕ2

Jp2ϕ2 Jϕ1ϕ2 Jϕ2ϕ2


−1Jp2λJϕ1λ

Jϕ2λ


where

Jλλ =Jλp2 =
n100+n101+y1

(1− p̂λ1 )
2

+
n111

(p̂λ1 )
2
+

(1−ϕ̂λ1 )2x1
(π̂λ1 )

2
, Jϕ1ϕ1 =

n100+y1

(1− ϕ̂λ1 )
2
+

n101

(ϕ̂λ1 )
2
+

(1−p̂λ1 )2x1
(π̂λ1 )

2

Jp2p2 = Jλλ +
n200+n201+y2

(1− p̂λ2 )
2

+
n211

(p̂λ2 )
2
+

(1− ϕ̂λ2 )
2x2

(π̂λ1 )
2

, Jϕ2ϕ2 =
n200 + y2

(1− ϕ̂λ2 )
2
+

n201

(ϕ̂λ2 )
2
+

(1−p̂λ2 )2x2
(π̂λ2 )

2

Jλϕ1 = Jp2ϕ1 =
x1

(π̂λ1 )
2
, Jp2ϕ2 =

x2
(π̂λ2 )

2
Jλϕ2 = Jϕ1ϕ2 = 0.

The adjusted restricted information Iλλ(λ,Θ) is obtained by replacing observed counts by their ex-

pectations. However, Efron and Hinkley (1978) claimed that the observed information is preferable

form to the expected information in general. In fact, tests using the adjusted restricted informa-

tion did not have good features in our simulation study. Thus we do not consider tests based the

adjusted restricted information.

3.2. Asymptotic tests

The first likelihood-based test considered in this paper is the Wald test which rejects the null

hypothesis when

W =
(λ̂− λ0)

2

V̂ar(λ̂)
(3.4)

is greater than χ2
1,α, where λ̂ = p̂1 − p̂2 and V̂ar(λ̂) = V̂ar(p̂1) + V̂ar(p̂2) which are obtained using

(2.1) and (2.2), and χ2
1,α represents the 1−α quantile of a χ2-distribution with 1 degree of freedom.

The Wald test may be the most popular, but it does not approximate the nominal level well in

many sampling designs. Thus, we are doubtful of the usability of (3.4). However, some adjustments
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Table 3.1. Case-control data of Hildesheim et al. (absorbing false-negatives into true-positives)

Fallible device

Inerrant device Control group Case group

0 1 0 1

Subsample
0 33 11 13 3

1 na 32 na 23

701 535 318 375

of the Wald test may have good statistical properties as shown in Agresti and Coull (1998) and

Brown et al. (2001). We may expect better performance by adding some artificial observations to

observed counts and applying the Wald procedure. The theoretical justification of these artificial

observations in the double sampling model can be found in Lee and Byun (2008). We add 0.5 to

each nijk, but add 1 to xi and yi, i = 1, 2. Thus, the total sample size in each group is increased

by 3.5. This test will be denoted by WA.

The log-likelihood ratio test reject the null hypothesis when

LR = 2
[
ℓ
(
λ̂, p̂2, ϕ̂1, ϕ̂2

)
− ℓP

(
p̂λ0
2 , ϕ̂λ0

1 , ϕ̂λ0
2 ;λ0

)]
is greater than χ2

1,α. It is well-known that the test has many nice statistical properties.

A large sample theory also indicates that λ̂ is asymptotically normally distributed with mean λ and

inverse variance Iλλ(λ,Θ). Because of nuisance parameter Θ, we cannot use this result directly.

Barndorff-Nielsen and Cox (1994) suggested that Jλλ(λ,Θλ) or Jλλ(λ̂,Θλ̂) can replace Iλλ(λ,Θ).

This suggestion gives two Wald-like test statistics

WOP =
(
λ̂− λ0

)2
Jλλ

(
λ0,Θ

λ0

)
and WOM =

(
λ̂− λ0

)2
Jλλ

(
λ̂,Θλ̂

)
.

Next two tests are based on the Rao’s score which is obtained from the partial derivative of

ℓ(λ, p2, ϕ1, ϕ2) with respective to λ. Substituting nuisance parameters by the corresponding so-

lutions of profile likelihood equations, we have

s
(
Θ̂λ;λ

)
= −n100 + n101 + y1

1− λ− p̂λ2
+

n111

λ+ p̂λ2
+

(1− ϕ̂λ1 )x1
π1

.

Then, weighting by Jλλ(λ0,Θ
λ0) and Jλλ(λ̂,Θλ̂), we have two tests

SOP = s
(
Θ̂λ0 ;λ0

)(
Jλλ

(
λ0,Θ

λ0

))−1

and SOM = s
(
Θ̂λ0 ;λ0

)(
Jλλ

(
λ̂,Θλ̂

))−1

.

Both tests also reject the null hypothesis when their observed values are greater than χ2
1,α.

3.3. An example

The case-control study of Hildesheim et al. (1991) aimed to examine if invasive cervical cancer can

influence exposure to the Herpes Simplex Virus (HSV). To explore the relationship, western blot

procedure was applied to 693 women in the case group and for 1236 women in the control group

to detect the infection of HIV infections. Since the western blot procedure is fallible, a sub-sample

from each group was further investigated by refined western blot procedure, which is known to be a
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Table 4.1. Simulated significance level when p1 = 0.3, p2 = 0.3 and α = 0.05

Group 1 Group 2 Simulated significance level

N1 n1 ϕ1 N2 n2 ϕ2 W WA WOP WOM SOP SOM LR

100 20

0.1

100

20
0.1 0.0760 0.0460 0.0312 0.0723 0.1149 0.0424 0.0650

0.2 0.0796 0.0521 0.0384 0.0757 0.0914 0.0384 0.0646

30
0.1 0.0716 0.0473 0.0399 0.0682 0.0919 0.0448 0.0615

0.2 0.0719 0.0497 0.0415 0.0685 0.0832 0.0427 0.0606

200

40
0.1 0.0737 0.0476 0.0378 0.0701 0.1071 0.0407 0.0617

0.2 0.0728 0.0501 0.0395 0.0694 0.0962 0.0413 0.0611

60
0.1 0.0743 0.0480 0.0392 0.0712 0.1105 0.0382 0.0604

0.2 0.0727 0.0488 0.0396 0.0697 0.1026 0.0391 0.0598

0.2

100

20
0.1 0.0798 0.0521 0.0384 0.0757 0.0915 0.0385 0.0647

0.2 0.0806 0.0558 0.0426 0.0766 0.0802 0.0375 0.0643

30
0.1 0.0764 0.0541 0.0456 0.0731 0.0735 0.0385 0.0615

0.2 0.0754 0.0553 0.0459 0.0719 0.0705 0.0383 0.0608

200

40
0.1 0.0805 0.0565 0.0441 0.0771 0.0774 0.0329 0.0622

0.2 0.0778 0.0566 0.0450 0.0745 0.0743 0.0350 0.0612

60
0.1 0.0811 0.0573 0.0435 0.0781 0.0760 0.0292 0.0608

0.2 0.0789 0.0571 0.0443 0.0759 0.0745 0.0314 0.0608

200 40

0.1

200

40
0.1 0.0622 0.0484 0.0415 0.0597 0.0646 0.0513 0.0576

0.2 0.0637 0.0520 0.0466 0.0612 0.0596 0.0469 0.0563

60
0.1 0.0599 0.0489 0.0443 0.0580 0.0606 0.0495 0.0555

0.2 0.0604 0.0505 0.0465 0.0584 0.0586 0.0488 0.0552

300

60
0.1 0.0610 0.0492 0.0422 0.0588 0.0637 0.0496 0.0566

0.2 0.0611 0.0508 0.0453 0.0590 0.0599 0.0487 0.0557

90
0.1 0.0610 0.0497 0.0424 0.0592 0.0636 0.0483 0.0562

0.2 0.0601 0.0499 0.0438 0.0583 0.0606 0.0485 0.0554

0.2

200

40
0.1 0.0633 0.0518 0.0464 0.0607 0.0590 0.0467 0.0558

0.2 0.0639 0.0539 0.0483 0.0615 0.0572 0.0444 0.0552

60
0.1 0.0618 0.0527 0.0478 0.0597 0.0558 0.0442 0.0539

0.2 0.0617 0.0534 0.0488 0.0598 0.0555 0.0448 0.0542

300

60
0.1 0.0631 0.0531 0.0473 0.0608 0.0572 0.0439 0.0547

0.2 0.0623 0.0537 0.0480 0.0601 0.0557 0.0441 0.0541

90
0.1 0.0637 0.0547 0.0476 0.0617 0.0563 0.0426 0.0544

0.2 0.0626 0.0542 0.0480 0.0606 0.0557 0.0433 0.0541

relatively accurate procedure. Originally the fallible procedure is exposed to the two types of error,

however we assume the false-negative error rate is zero. The false-negative cases are absorbed into

the true-positive. This artificial data is shown in Table 3.1.

We found the maxmum likelihood estimates of λ is λ̂ = −0.1566 with standard error 0.0538, while

the artificial observations adjusted it to λ̃ = −0.1511 with standard error 0.0545. Thus, W and WA

were calculated as 8.480 and 7.700. Since χ2
1,0.05 = 3.8416, the null hypothesis is rejected by both

tests with p-values 0.0036 and 0.0055, respectively. The other tests were WOP = 5.732,WOM =

10.346, SOP = 9.223, SOM = 5.1097 and LR = 8.061. These give p-values as 0.0167, 0.0013, 0.0024

and 0.0045, respectively. Thus, we can reject the null hypothesis at the 5% significance level. That

is, we may conclude that invasive cervical cancer would affect exposure to HSV. However, the tests

reported different p-values. Since they are all asymptotic tests, actual levels of test are not the

nominal level. In fact, actual level of some tests is quite different from the nominal level 0.05 in our

simulation study.
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Figure 4.1. Power of W,WA,WOP, SOP and LR for testing H0 : λ = 0 against H1 : λ ̸= 0 when N1 = N2 = 100, n1 =

n2 = 20, ϕ1 = 0.1, ϕ2 = 0.2 and p1 = 0.3 (left), and N1 = N2 = 200, n1 = n2 = 40, ϕ1 = 0.1, ϕ2 = 0.2 and p1 = 0.3

(right).

4. Comparison of Tests and Conclusions

Note that WOP, SOP and LR require to solve the profile likelihood equations, which are computa-

tionally expensive. Thus, one may prefer relatively simple W,WA or WOM. In particular W and

WA can be obtained simply by a calculator and hence computationally most preferable. However,

the difference between the actual level of W and the nominal level is quite big in our simulation

study. For instance, when N1 = N2 = 100, n1 = n2 = 20, ϕ1 = ϕ2 = 0.1 and p1 = p2 = 0.3, the

actual level of test based onW was estimated to 0.076. We estimated the actual levels of tests under

various configurations of parameter values with each 1,000,000 random samples. These results are

shown in Table 4.1. If we increase sample size, then the size of tests considered in this paper would

eventually converge to the nominal level. Thus, we compared the actual size of tests in relatively

small or moderately large samples.

Some messages of Table 4.1 are quite clear. For instance, W cannot approximate the nominal level

well, even if sample size is moderately large, while WA has the ability in approximating the nominal

level compared with other likelihood-based tests. LR also gives good approximations.

The power property ofWA,WOM, SOM and LR is similar in that they have near same shape of power

curve as shown Figure 4.1. For small sample size, the power of WA is slightly lower than W,SOP

and LR, which is because they make more type I errors than nominal level achieving more power

(4.1, left). We also examined the power of tests under various configurations of parameter values,

but the power patterns were not changed dramatically. We may conclude that WA is a desirable

test in approximation and power property with computational simplicity.
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