DOI QR코드

DOI QR Code

Spatial Distribution of Transparent Exopolymer Particles(TEP) and Their Relation to Carbon Species in the Euphotic Layer of the Northern East Sea

동해 북부해역 유광층에서 TEP 분포와 이산화탄소 인자와의 상호관련성

  • Jeon, Hyun-Duck (Division of Polar and Climate Research, KOPRI) ;
  • Rho, Tae-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Tong-Sup (Division of Earth Environmental System, Pusan National University)
  • 전현덕 (한국해양연구원 부설 극지연구소) ;
  • 노태근 (부산대학교 지구환경시스템학부) ;
  • 이동섭 (부산대학교 지구환경시스템학부)
  • Received : 2012.01.05
  • Accepted : 2012.02.14
  • Published : 2012.05.31

Abstract

Transparent exopolymer particles (TEP) are formed by aggregation of polysaccharide products excreted by phytoplankton and have sticky character like gel. They play important role in the production of marine snow in water column. To study the distribution pattern of TEP concentration and its role in carbon cycle in the surface ocean, we measured pH, Total alkalinity (TA), and chlorophyll-a in addition to physical characteristics of seawater within the surface water column. TEP concentrations ranged from nearly undetectable values to $338{\mu}g\;Xeq\;l^{-1}$. They were considerably lower than previously reported values from costal sites, but showed similar values observed in other oceanic region during phytoplankton bloom periods. The spatial distribution of TEP concentrations were similar to those of chlorophyll-a, which indicate that the production of TEP were closely related to phytoplankton. Calculated total dissolved inorganic carbon ($TCO_2$) from the pH and TA was normalized to 35 psu of salinity ($NTCO_2$) and showed negative linear relationship with temperature. Biological drawdown of $NTCO_2$ ($NTCO_{2bio}$) was estimated from the difference between theoretical $NTCO_2$ values and observed $NTCO_2$. In the warm region located south of $40^{\circ}N$ along the $132.5^{\circ}N$ meridional lines, $NTCO_{2bio}$ showed negative value and TEP concentrations were high. This suggested that negative $NTCO_{2bio}$ may be attributed to the biological processes. At the stations located between 44 and $46^{\circ}N$, TEP concentrations showed high concentration at the chlorophyll-a maximum layer within the water column while they showed low concentration in the surface layer. Carbon content of TEP constituted about 40% of $NTCO_{2bio}$ at the chlorophylla maximum layer. In this study, we could not observe any positive and negative relationship between TEP concentration and $NTCO_2$ or pH. It is obvious that we should consider the importance of TEP in the biological carbon cycling processes within surface layer.

Transparent exopolymer particles(TEP)는 식물플랑크톤이 배출하는 다당류 물질이 자가응집을 통해 생성되는 끈적거리는 특성을 가진 물질로 해중설 형성에 중요한 역할을 담당한다고 밝혀져 왔다. 본 연구는 동해 북부해역에서 TEP 농도 분포특성과 탄소순환에서 역할을 이해하기에 이산화탄소계 인자, 엽록소-a 농도들을 관측하였다. 동해 북부해역의 TEP는 $0{\sim}338{\mu}g\;Xeq\;l^{-1}$로 연안역의 농도보다 낮으나 다른 외양역의 대번식기와 유사한 값이 나타났다. TEP의 공간분포는 엽록소-a의 공간 분포특성과 유사하게 나타나고 있는 것으로 보아 식물플랑크톤이 TEP의 주요 기원으로 사료된다. 직접 측정한 pH와 총 알칼리도의 값을 이용하여 총 용존 무기탄소($TCO_2$)를 계산하였으며, 염분 35 psu에 해당하는 값으로 변환된 $NTCO_2$는 수온에 대해 선형적으로 감소하고 있다. 수온으로 계산된 $NTCO_2$와 현장에서 측정한 $NTCO_2$와의 차이는 생물적인 과정에 의한 이산화탄소의 제거($NTCO_{2bio}$)를 나타내는데, 난수역에서 $NTCO_{2bio}$값이 음의 값이 나타났고 TEP의 농도가 높은 것으로 보아 생물적인 과정에 의해서 해수중의 이산화탄소가 감소한 것으로 사료된다. 북위 $44^{\circ}-46^{\circ}$ 냉수역은 표층에서 TEP 농도는 낮지만, 엽록소-a 최대층에서 TEP의 농도 또한 높게 나타났고 TEP에 포함된 탄소(TEP-C)가 $NTCO_{2bio}$의 약 40%를 기여하였다. 본 연구에서 TEP농도가 해수 중의 이산화탄소 농도 및 pH와 뚜렷한 상관관계가 나타나지 않아서 이산화탄소 농도에 따른 TEP의 반응은 살펴볼 수 없었으나 해수 중의 탄소순환에서 생물적인 과정을 이해하는데 TEP가 중요하게 고려되어야 함을 시사한다.

Keywords

References

  1. Alldredge, A.L. and P. Mcgillivary, 1991. The attachment probabilities of marine snow and their implications for particle coagulation in the ocean. Deep-Sea Res. I, 38: 431-443. https://doi.org/10.1016/0198-0149(91)90045-H
  2. Alldredge, A.L., U. Passow and B.E. Logan, 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res., 40: 1131-1140.
  3. Arrigo, K.R., 2007. Marine manipulations. Nature, 450: 491-492. https://doi.org/10.1038/450491a
  4. Asper, V.L.W., G. Deuser, G.A. Knauer and S.E. Lorenz, 1992. Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature, 357: 670-672. https://doi.org/10.1038/357670a0
  5. Boyd, P.W., R. Strzepek, S. Takeda, G.A. Jackson, C.S. Wong, R.M. McRay, C. Law, H. Kiyosawa, H. Saito, N. Sherry, K. Johnson, J. Gower and N. Ramaiah, 2005. The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnol. Oceanogr., 50: 1872-1886. https://doi.org/10.4319/lo.2005.50.6.1872
  6. Chin, W.C., M.V. Orellana and P. Verdugo, 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature, 391: 568-572. https://doi.org/10.1038/35345
  7. Claquin, P., I. Probert, S. Lefebvre and B. Veron, 2008. Effects of temperature on photosynthetic parameters and TEP production in eight species of marine microalgae. Aquat. Microb. Ecol., 51(1): 1-11. https://doi.org/10.3354/ame01187
  8. Clayton, T. and R.H. Byrne, 1993. Spectrophotometric seawater pH measurements : total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. I, 40: 2115- 2129. https://doi.org/10.1016/0967-0637(93)90048-8
  9. Corzo, A., S. Rodriguez-Galvez, L. Lubian, P. Sangra, A. Martnez and J.A. Morillo, 2005. Spatial distribution of transparent exopolymer particles in the Bransfield Strait. Antarctica. J Plankton Res., 27(7): 635-646. https://doi.org/10.1093/plankt/fbi038
  10. Dam, H.G. and D.T. Drapeau, 1995. Coagulation efficiency, organicmatter glues, and the dynamics of particles during a phytoplankton bloom in a mesocosm study. Deep-Sea Res. II, 42: 111-123. https://doi.org/10.1016/0967-0645(95)00007-D
  11. Decho, A.W., 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food web and marine processes. Oceanography and Marine Biology Annual Review, 28: 73-153.
  12. Engel, A., 2000. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom. J. Plank. Res., 22: 485-497. https://doi.org/10.1093/plankt/22.3.485
  13. Engel, A., 2002. Direct relationship between $CO_{2}$ uptake and transparent exopolymer particles production in natural phytoplankton. J. Plank. Res., 24: 49-54. https://doi.org/10.1093/plankt/24.1.49
  14. Engel, A., 2004. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes. Deep-Sea Res., 51(1): 83-92. https://doi.org/10.1016/j.dsr.2003.09.001
  15. Engel, A., M. Meyerhfer and K. Von Brckel, 2002. Chemical and biological composition of suspended particles and aggregates in the Baltic Sea in summer 1999. Estuar. Coast Shelf Sci., 55: 729- 741. https://doi.org/10.1006/ecss.2001.0927
  16. Engel, A., and U. Passow, 2001. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar. Ecol. Prog. Ser., 219: 1-10. https://doi.org/10.3354/meps219001
  17. Engel, A., S. Thoms, U. Riebesell, E. Rochelle-Newall and I. Zondervan, 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature, 428: 929-932. https://doi.org/10.1038/nature02453
  18. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry and F.J. Millero, 2004. Impact of anthropogenic $CO_{2}$ on the $CaCO_{3}$ system in the oceans. Science, 305: 362-366. https://doi.org/10.1126/science.1097329
  19. Fowler, S.W. and G.A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16: 147-194. https://doi.org/10.1016/0079-6611(86)90032-7
  20. Grossart, H.P. and M. Simon, 1997. Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, phytoplankton, and zooplankton. Limnol. Oceanogr., 42, 1651-1659. https://doi.org/10.4319/lo.1997.42.8.1651
  21. Hong, Y., W.O. Smith and A.M. White, 1997. Studies on transparent exopolymer particles (TEP) produced in the Ross Sea (Antarctica) and by Phaeocystis antarctica (Prymnesiophyceae). J. Phycol., 33(3): 368-376. https://doi.org/10.1111/j.0022-3646.1997.00368.x
  22. Jackson, G.A. and A.B. Burd, 1998. Aggregation in the marine environment. Environ. Sci. Tech., 32: 2805-2814. https://doi.org/10.1021/es980251w
  23. Jackson, G.A., A.M. Waite and P.W. Boyd, 2005. Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments. Geophys. Res. Lett., 32, L13607, doi:10.1029/2005GL023180.
  24. Kepkay, P., 2000. Colloids and the ocean carbon cycle. In: Wangersky P (ed) The Handbook of environmental chemistry, vol. 5. Berlin, Springer verlag. pp. 35-56.
  25. Kim, J.-M., K. Lee, K. Shin, E.J. Yang, A. Engel, D.M. Karl and H.- C. Kim, 2011. Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions. Geophys. Res. Lett., 38: L08612, doi:10.1029/ 2011GL047346.
  26. Kiorboe, T., K.P. Andersen, H.G. Dam, 1990. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol., 107: 235-246. https://doi.org/10.1007/BF01319822
  27. Kloareg, B. and R.S. Quatrano, 1988. Structure of cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanography and Marine Biology Annual Review, 26: 259-315.
  28. Lorenzen, C.J., 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res. I, 13: 223-227.
  29. Logan, B.E., U. Passow, A.L. Alldredge, H.-P. Grossart and M. Simon, 1995. Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res. II, 42: 203- 214. https://doi.org/10.1016/0967-0645(95)00012-F
  30. Lueker, T.J., A.G. Dickson and C.D. Keeling, 2000. Ocean p$CO_{2}$ calculated from dissolved inorganic carbon, alkalinity, and equations for $K_{1}$ and $K_{2}$: validation based on laboratory measurements of $CO_{2}$ in gas and seawater at equilibrium. Mar. Chem., 70: 105-119. https://doi.org/10.1016/S0304-4203(00)00022-0
  31. Mari, X., 2008. Does ocean acidification induce an upward flux of marine aggregates? Biogeosciences, 5(4): 1023-1031. https://doi.org/10.5194/bg-5-1023-2008
  32. Mari, X. and A. Burd, 1998. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory. Mar. Ecol. Prog. Ser., 163: 63-76. https://doi.org/10.3354/meps163063
  33. Mari, X. and T. Kiørboe, 1996. Abundance, size distribution and bacterial colonization of transparent exopolymer particles (TEP) in the Kattegat. J. Plank. Res., 18: 969-986. https://doi.org/10.1093/plankt/18.6.969
  34. Millero, F.J., J.Z. Zhang, K. Lee and D.M. Campbell, 1993. Titration alkalinity of seawater. Mar. Chem., 44: 153-165. https://doi.org/10.1016/0304-4203(93)90200-8
  35. Mopper, K., J. Zhou, K.S. Ramana, U. Passow, H.G. Dam and D.T. Drapeau, 1995. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep-Sea Res. II, 42: 47-73. https://doi.org/10.1016/0967-0645(95)00004-A
  36. Obernosterer, I. and G.J. Herndl, 1995. Phytoplankton extracellular release and bacterial growth: dependence on inorganic N:P ratio. Mar. Ecol. Prog. Ser., 116: 247-257. https://doi.org/10.3354/meps116247
  37. Ortega-Retuerta, E., I. Reche, E. Pulido-Villena, S. Augusti and C.M. Duarte, 2009. Uncoupled distributions of transparent exopolymer particles (TEP) and dissolved carbohydrates in the Southern Ocean. Mar. Chem., 115: 59-65. https://doi.org/10.1016/j.marchem.2009.06.004
  38. Park, G.H., K. Lee, and P. Tishchenko, 2008. Sudden, considerable reduction in recent uptake of anthropogenic $CO_{2}$ by the East/Japan Sea. Geophys. Res. Lett., 35: L23611, doi:10.1029/2008GL036118.
  39. Passow, U., 2002. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr., 55: 287-333. https://doi.org/10.1016/S0079-6611(02)00138-6
  40. Passow, U. and A.L. Alldredge, 1994. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Mar. Ecol. Prog. Ser., 113: 185-198. https://doi.org/10.3354/meps113185
  41. Passow, U. and A.L. Alldredge, 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr., 40: 1326-1335. https://doi.org/10.4319/lo.1995.40.7.1326
  42. Passow, U., W. Kozlowski and M. Vernet, 1995. Distribution of Transparent Exopolymer Particles (TEP) during summer at a permanent station in Antarctica. Antarct. J. US, 30: 265-266.
  43. Passow, U., R.F. Shipe, A. Murray, D.K. Pak, M.A. Brzezinski and A.L Alldredge, 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont. Shelf Res., 21: 327-346. https://doi.org/10.1016/S0278-4343(00)00101-1
  44. Penna, A., S. Bertuli, N. Penna and M. Magnani, 1999. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from the Adriatic Sea. J. Plank. Res., 21: 1681-1690. https://doi.org/10.1093/plankt/21.9.1681
  45. Prieto, L., G. Navarro, A. Cozar, F. Echevarria and C.M. Garcia, 2006. Distribution of TEP in the euphotic and upper mesopelagic zones of the southern Iberian coasts. Deep-Sea Res. II, 53(11-13): 1314-1328. https://doi.org/10.1016/j.dsr2.2006.03.009
  46. Ramaiah, N., T. Yoshikawa and K. Furuya, 2001. Temporal variation in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic Ria in Japan. Mar. Ecol. Prog. Ser., 212: 79-88. https://doi.org/10.3354/meps212079
  47. Riebesell, U., K.G. Schulz, R.G.J. Bellerby, M. Botros, P. Fritsche, M. Meyerhofer, C. Neill, G. Nondal, A. Oschlies, J. Wohlers and E. Zollner, 2007. Enhanced biological carbon consumption in a high $CO_{2}$ ocean. Nature, 450: 545-548. https://doi.org/10.1038/nature06267
  48. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wannikhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono and A.F. Rios, 2004. The oceanic sink for anthropogenic $CO_{2}$. Science, 305: 367-371. https://doi.org/10.1126/science.1097403
  49. Shanks, A.L. and J.D. Trend, 1980. Marine snow, sinking rates and potential role in vertical flux. Deep-Sea Res. I, 27: 137-143. https://doi.org/10.1016/0198-0149(80)90092-8
  50. Smetacek, V.S., 1985. Role of sinking in diatom life-history cycles: Ecological, evolutionary, and geological significance. Mar. Biol., 84: 239-251. https://doi.org/10.1007/BF00392493
  51. Takahashi, T., J. Olafsson, J. Goddard, D.W. Chipman and S.C. Sutherland, 1993. Seasonal variation of $CO_{2}$ and nutrients in the highlatitude surface oceans. Glob. Biogeochem. Cycles, 7: 843-878. https://doi.org/10.1029/93GB02263
  52. Tanaka, T., 1992. Phase transitions of gels. ACS Symp. Ser., 480: 1- 21.
  53. Volk, T. and M.I. Hoffert, 1985. The Carbon Cycle and Atmospheric $CO_{2}$: Natural Variations Archean to Present In: Sundquist ET, Broecker WS (eds) American Geophysical Union, Washington, pp. 99-110.
  54. Waite, A.M., Olson, R.J., Dam, H.G. and U. Passow, 1995. Sugarcontaining compounds on the cell surfaces of marine diatoms measured using concanavalin A and flow cytometry. J. Phycol., 31: 925-933 https://doi.org/10.1111/j.0022-3646.1995.00925.x

Cited by

  1. Dissolved Copper and Nickel in the surface water of East Sea, Korea vol.17, pp.4, 2014, https://doi.org/10.7846/JKOSMEE.2014.17.4.257
  2. Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses vol.34, pp.4, 2012, https://doi.org/10.4217/OPR.2012.34.4.413