DOI QR코드

DOI QR Code

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis

색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화

  • Lee, Yong-Woo (Climate & Marine Environment Team, Korea Marine Environment Management Corporation) ;
  • Park, Mi-Ok (Department of Oceanography, Pukyong National University) ;
  • Yoon, Ji-Hyun (Department of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Hur, Sung-Bum (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
  • 이용우 (해양환경관리공단 기후수질팀) ;
  • 박미옥 (부경대학교 해양학과) ;
  • 윤지현 (부경대학교 해양바이오신소재학과) ;
  • 허성범 (부경대학교 해양바이오신소재학과)
  • Received : 2011.08.25
  • Accepted : 2011.03.27
  • Published : 2012.05.31

Abstract

To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.

만의 대부분이 조간대(약 75%)인 전라북도 곰소만 내 해수와 퇴적물 중 미세조류의 생체량과 군집조성의 월 변화를 비교하기 위해서 1999년 2월부터 2000년 1월까지는 매월, 2000년 2월부터 12월까지는 격월로 high-performance liquid chromatograph(HPLC)를 이용하여 광합성색소 분석을 실시하였다. 또한 해수 중 미세조류의 군집구조를 조절하는 환경요인을 조사하기 위해서 수온, 염분, 영양염류, 용존산소, 화학적산소요구량을 분석하였다. 해수 중 미세조류의 월별 분포는 대체로 담수의 유입으로 인한 영양염류의 공급이 많은 시기에 높은 생체량(chlorophyll a)을 보였다. 퇴적물 중 저서미세조류의 생체량은 국내외 다른 갯벌지역에 비해서 상대적으로 낮았으며, 단위 면적당 적분한 해수 중 미세조류의 생체량에 비해서 2-3배 낮게 나타났다. 해수와 퇴적물 중 미세조류의 색소분석 결과, 규조류의 주요색소인 fucoxanthin 농도가 가장 높았으며, fucoxanthin과 chlorophyll a의 월 변화가 유사한 양상을 보여 곰소만 내 갯벌과 해수 중 미세조류는 규조류가 우점하는 것으로 판단된다. 그러나 조하대 표층 해수 중 미세조류 생체량(chlorophyll a)의 월 변화는 갯벌에 서식하는 저서미세조류 생체량의 월 변화와 다른 양상을 보였으며, 현미경 관찰을 통한 해수 중 미세조류의 종조성 분석 결과, 저서미세조류의 우점종인 저서성 규조류는 거의 관찰되지 않았다. 본 연구결과는 곰소만 갯벌에서 재부유되어 조하대로 공급되는 저서미세조류가 조하대 표층 생태계에 서식하는 생물에게 먹이원으로서의 기여도는 상대적으로 낮다는 것을 시사한다. 갯벌에서 재부유되어 조하대로 공급되는 미세조류의 정확한 평가와 함께 조하대에서 이들의 수직, 수평 거동과 관련된 심도 깊은 연구가 필요할 것으로 판단된다.

Keywords

References

  1. 오승진, 문창호, 박미옥, 2004. 한국 서해 새만금 갯벌에서 저서 미세조류의 생체량과 군집조성에 대한 HPLC 분석. 한국수산학회지, 37: 215-225.
  2. 유만호, 최중기, 2005. 강화도 갯벌에서 저서미세조류의 계절적 분포 및 일차 생산력. 한국해양학회지, 10: 8-18.
  3. 윤지현, 2001. 곰소만 양식 바지락의 밀도와 성장. 석사학위논문, 부경대학교, 부산, pp. 28-48.
  4. 이용우, 최은정, 김영상, 강창근, 2009. 광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화. 한국해양학회지, 14: 48-55.
  5. 이학영, 2003. 가마미 해수욕장(전남 영광) 갯벌의 미세조류의 분 포에 관한 연구. 한국환경과학회지, 12: 715-724.
  6. 장진호, 류상옥, 조영조, 2007. 곰소만 조간대 퇴적물의 장기적 변화. 한국지구과학회지, 28: 357-366.
  7. Barranguet, C., P.M.J. Herman and J.J. Sinke, 1997. Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J. Sea Res., 38: 59-70. https://doi.org/10.1016/S1385-1101(97)00032-4
  8. Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923-937. https://doi.org/10.1016/0198-0149(86)90007-5
  9. Brotas, V. and M.R. Plante-Cuny, 1998. Spatial and temporal patterns of microphytobenthic taxa of estuarine tidal flats in the Tagus Estuary (Portugal) using pigment analysis by HPLC. Mar. Ecol. Prog. Ser., 171: 43-57. https://doi.org/10.3354/meps171043
  10. Burkill, P.H., R.F.C. Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581-590. https://doi.org/10.1007/BF00392796
  11. Cariou-Le Gall, V. and G.F. Blanchard, 1995. Monthly HPLC measurements of pigment concentration from an intertidal muddy sediment of Marennes-Oleron Bay, France. Mar. Ecol. Prog. Ser., 121: 171-179. https://doi.org/10.3354/meps121171
  12. Carpenter, J.H., 1965. The Chesapeake Institute Technique for the Winkler dissolved oxygen methods. Limnol. Oceanol., 10: 142- 143.
  13. Cartaxana, P., C.R. Mendes, M.A. van Leeuwe and V. Bratas, 2006. Comparative study on microphytobenthic pigments of muddy and sandy intertidal sediments of the Tagus estuary. Estuar. Coast. Shelf Sci., 66: 225-230. https://doi.org/10.1016/j.ecss.2005.08.011
  14. de Jong, D.J. and V.N. de Jonge, 1995. Dynamics and distribution of microphytobenthic chlorophyll-a in the Western Scheldt estuary (SW Netherlands). Hydrobiologia, 311: 21-30. https://doi.org/10.1007/BF00008568
  15. de Jonge, V. and J. van Beusekom, 1992. Contribution of resuspended microphytobenthos to total phytoplankton in the Ems Estuary and its possible role for grazers. Neth. J. Sea Res., 30: 91-105. https://doi.org/10.1016/0077-7579(92)90049-K
  16. Herman, P.M.J., J.J. Middelburg, J. Widdows, C.H. Lucas and C.H.R. Heip, 2000. Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar. Ecol. Prog. Ser., 204: 79-92. https://doi.org/10.3354/meps204079
  17. Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright, 1997. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, pp. 74-75.
  18. Kang, C.K., E.J. Choy, Y.B. Hur and J.I. Myeong, 2009. Isotopic evidence of particle size-dependent food partitioning in cocultured sea squirt Halocynthia roretzi and Pacific oyster Crassostrea gigas. Aquat. Biol., doi: 10.4454/ab00126.
  19. Kang, C.K., J.B. Kim, J.B. Kim, P.Y. Lee and J.S. Hong, 2001. The importance of intertidal benthic autotrophs to the Kwangyang Bay (Korea) food webs: ${\delta}^{13}$C analysis. J. Korean Soc. Oceanogr., 36: 109-123.
  20. Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee and J.S. Hong, 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser., 259: 79-92. https://doi.org/10.3354/meps259079
  21. Kang, C.K., Y.W. Lee, E.J. Choy, J.K. Shin, I.S. Seo and J.S. Hong, 2006. Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Mar. Ecol. Prog. Ser., 315: 113-127. https://doi.org/10.3354/meps315113
  22. Koh, C.H., J.S. Khim, H. Araki, H. Yamanishi and K. Koga, 2007. Within-day and seasonal patterns of microphytobenthos biomass determined by co-measurement of sediment and water column chlorophylls in the intertidal mudflat of Nanaura, Saga, Ariake Sea, Japan. Estuar. Coast. Shelf Sci., 72: 42-52. https://doi.org/10.1016/j.ecss.2006.10.005
  23. Koh, C.H., J.S. Khim, H. Araki, H. Yamanishi, H. Mogi and K. Koga, 2006. Tidal resuspension of microphytobenthic chlorophyll a in a Nanaura mudflat, Saga, Ariake Sea, Japan: flood-ebb and spring-neap variations. Mar. Ecol. Prog. Ser., 312: 85-100. https://doi.org/10.3354/meps312085
  24. MacIntyre, H.L. and J.J. Cullen, 1995. Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow-water benthos. Mar. Ecol. Prog. Ser., 122: 227-237. https://doi.org/10.3354/meps122227
  25. Metaxatos, A. and L. Ignatiades, 2002. Seasonality of algal pigments in the sea water and interstitial water/sediment system of an eastern Mediterranean coastal area. Estuar. Coast. Shelf Sci., 55: 415-426. https://doi.org/10.1006/ecss.2001.0915
  26. Park, M.O. and J.S. Park, 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. J. Oceanol. Soc. Korea, 32: 46-55.
  27. Reid, P.C., C. Lancelot, W.W.W. Gieskes, E. Hagmeier and G. Weichart, 1990. Phytoplankton of the North Sea and its dynamics: a review. Neth. J. Sea Res., 26: 295-331. https://doi.org/10.1016/0077-7579(90)90094-W
  28. Strickland, J.D. and T.R. Parsons. 1972. A practical handbook of seawater analysis. 2nd ed. Bull. Fish. Res. Bd. Can., 167 p.
  29. Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser., 77: 183-196. https://doi.org/10.3354/meps077183

Cited by

  1. Isolation of salt-tolerant bacteria from rhizosphere and rhizoplane of halophyte plant Suaeda japonica in Gochang·Buan tidal flat vol.60, pp.2, 2017, https://doi.org/10.3839/jabc.2017.021
  2. 2011년 곰소만 표층퇴적물의 지화학적 특성 및 중금속 오염도 평가 vol.50, pp.5, 2012, https://doi.org/10.5657/kfas.2017.0567