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REMARKS ON THE WIENER POLARITY INDEX OF SOME

GRAPH OPERATIONS†
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Abstract. TheWiener polarity indexWp(G) of a graphG of order n is the
number of unordered pairs of vertices u and v of G such that the distance
dG(u, v) between u and v is 3. In this paper the Wiener polarity index of

some graph operations are computed. As an application of our results, the
Wiener polarity index of a polybuckyball fullerene and C4 nanotubes and
nanotori are computed.
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1. Introduction

Let G = (V,E) be a connected simple graph in which V and E are the set
of vertices and edges respectively. As usual the distance between the vertices
u and v is denoted by dG(u, v) (or d(u, v) for short) and it is the length of a
shortest path connecting u and v. The number of unordered pairs of vertices u
and v of G such that dG(u, v) = k is denoted by d(G, k). A topological index
Top(G) for G is a number with this property that for every graph H isomorphic
to G, Top(G) = Top(H). The Wiener index is the first distance-based and most
studied topological indices, both from theoretical point of view and applications.
It is equal to the sum of distances between all pairs of vertices of the respective
graph [29].

The Wiener polarity index of an organic molecule with molecular graph G =
(V,E) is defined as Wp(G) = d(G, 3). Using the Wiener polarity index, Lukovits
and Linert demonstrated quantitative structure property relationships in a series
of acyclic and cycle-containing hydrocarbons [25]. In [12] Hosoya, one of the
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pioneers of chemical graph theory, found a physico-chemical interpretation of
Wp(G).

Recently, Du, Li and Shi [7] described a linear time algorithm for computing
the Wiener polarity index of trees and characterized the trees maximizing the
index among all trees of given order. Deng, Xiao and Tang [3] characterized the
extremal trees with respect to this index among all trees of order n and diameter
d. Deng [4] also gave the extremal Wiener polarity index of all chemical trees
with order n. Xiao and Deng [30] found the maximum Wiener polarity index of
chemical trees with n vertices and k pendants. Tong and Deng [27] characterized
the trees with the first three smallest Wiener polarity indices among all trees
of order n and diameter d. Mathematical properties and chemical meaning of
the Wiener polarity index and its applications in chemistry can be found in
[3, 4, 7, 9, 10, 12, 25, 27, 30] and the references cited therein.

The Wiener index of Cartesian product graphs was studied in [8, 21]. In
[20], Klavzar et al computed the Szeged index of Cartesian product graphs and
in [21] the PI index of the Cartesian product graphs is computed. In a series
of papers [1, 2, 11, 13, 15, 16, 17, 18, 19, 31, 33], Ashrafi and his co-authors
considered PI, vertex PI, hyper-Wiener, edge Wiener, edge frustration, Szeged,
edge Szeged and Zagreb group indices into account under some graph operations.
Here we continue this progress to compute the Wiener polarity index of some
graph operations.

Throughout this paper our notation is standard and taken mainly from [5,
14, 28]. For a graph G and two vertices u, v ∈ V (G), we define the odd distance
odG(u, v) as the length of the shortest odd walk joining u, v ∈ G, and the even
distance edG(u, v) as the length of the shortest even walk joining u, v ∈ G. If
there are no walk of odd (even) length between u and v, then we set odG(u, v) =
∞(edG(u, v) = ∞).

Definition 1.1. Let G and H be simple connected graphs. The join G + H,
symmetric difference G∆H, disjunction G ∨ H, composition G[H], Cartesian
product G ×H, strong product G ⊙H and tensor product G ⊗H of G and H
are defined as follows:

V (G+H) = V (G) ∪ V (H),

E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}
V (G∆H) = V (G)× V (H),

E(G∆H) = {(a, b)(c, d) : ac ∈ E(G) or bd ∈ E(H) not both}
E(G ∨H) = {(a, b)(c, d) : ac ∈ E(G) or bd ∈ E(H)}
E(G[H]) = {(a, b)(c, d) : ac ∈ E(G) or a = c and bd ∈ E(H)}

E(G×H) = {(a, b)(c, d) : [ac ∈ E(G) and b = d] or [a = c and bd ∈ E(H)]}
E(G⊙H) = {(a, b)(c, d) : [ac ∈ E(G) and b = d]

or [a = c and bd ∈ E(H)] or [ac ∈ E(G) and bd ∈ E(H)]}
E(G⊗H) = {(a, b)(c, d) : [ac ∈ E(G) and bd ∈ E(H)]}
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It is an easy fact that the Wiener polarity index of any graph with diameter
less than 3 such as the complete graph Kn, the star graph Sn, the Wheel Wn, the
Petersen graph P2,5, the complete bipartite graph Km,n, join G+H, symmetric
difference G∆H and the disjunction G ∨H are zero.

Example 1.2. The Wiener polarity index of the n−vertex path Pn is n−3 and
for the cycle Cn, n ≥ 7 is n.

Example 1.3. Consider the path Pn with vertex set V (Pn) = {x1, x2, ..., xn}.
We form a graph G with vertices correspond to each vertex of Pn as follows: for
each i, 1 ≤ i ≤ n we define a set Mi = {xi1 , xi2 , ..., ximi

} and connect any vertex
xi to all vertices in Mi. The resulting graph is called a caterpillar denoted by
G = Catn,m1,m2,...,mn . To compute the Wiener polarity index of G we notice
that there are three types of pair of vertices with distance three. At first, we
count the number of vertices u ∈ Mi, v ∈ Mi+1 and dG(u, v) = 3. The number
of such pairs is

∑n
i=1 mi.mi+1. Secondly, the number of vertices with u = xi,

v ∈ Mi+2 and dG(u, v) = 3 is [m3 + m4 + ... + mn] + [m1 + m2 + ... + mn−2].
Finally, if u, v ∈ {x1, x2, ..., xn} then the number of vertices with distance 3 is
n− 3. Hence we have:

Wp(Catn,m1,m2,...,mn) =
n∑

i=1

[mi.mi+1] + 2× [m3 +m4 + ...+mn−2]

+ [m1 +m2 +mn−1 +mn] + n− 3.

Let G and H be two graphs. We consider n copies of H and connect the i-th
vertex of G to all vertices of i-th copy of H. This graph is called the corona
product of G and H denoted by GoH.

2. Main results

In this section, the Wiener polarity index of some graph operations are com-
puted. For further details the interested reader can be consulted [1, 16, 19, 20,
26, 31, 32]. First of all it is clear that for any two vertices u and v in disjunction
graph G∨H we have dG∨H(u, v) ≤ 2 and so the Wiener polarity index of G∨H
is equal to zero. We now consider the composition graph G[H]. We have:

Theorem 2.1. Let G1, G2, ..., Gk be connected graphs then we have:

WP (G1[G2[...[Gk]...]]) = Wp(G1)
k∏

i=2

|V (Gi)|.

Proof. It is clear that,

dG1[G2]((a, b), (c, d)) =


0 if a = c, b = d
1 if (a = c), bd ∈ E(G2), or, ac ∈ E(G1)
2 if (a = c), bd /∈ E(G2)

dG1(a, c) if (a ̸= c)
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The proof is by induction on k. If k = 2 then we have: dG1[G2]((a, b), (c, d)) = 3

if and only if dG1(a, c) = 3. Therefore, WP (G1[G2]) = WP (G1).|V (G2)|2. Now
assume that the result holds for k. Then,

WP (G1[G2[...[Gk[Gk+1]]...]]) = Wp(G1)[(

k∏
i=2

|V (Gi)|)|V (Gk+1)|]

= Wp(G1)

k+1∏
i=2

|V (Gi)|.

This completes the proof. �
There are many graph operations with vertex set V (G) × V (H). Let us

consider the Cartesian product of graphs. We have:

Lemma 2.2. Let G1, G2, ..., Gk be connected graphs. Then

(a) d∏k
i=1 Gi

[ (x1, x2..., xk), (y1, y2, ..., yk) ] =
k∑

i=1

dGi (xi, yi)

(b) d(

k∏
i=1

Gi, 2) = [

k∑
i=1

di

k∏
j=1,j ̸=i

vj ] + 2[
∑

i,j∈Ak,i<j

eiej
∏
l̸=i,j

vl ]

(c) |E(

k∏
i=1

Gi)| =
k∑

i=1

(ei

k∏
i=1,i ̸=j

vj),

in which Ak = {1, 2, ..., k}, ei = |E(Gi)|, di = d(Gi, 2), and vi = |V (Gi)|.
Proof. We first notice that the following equality holds:

dG1×G2 [ (a, b), (c, d) ] = dG1(a, c) + dG2(b, d)

see [26] for details. We proceed by induction on k. The equality (a) is obvious
and (c) holds by the definition of Cartesian product of graphs. To prove (b), we
notice that dG1×G2 [ (a, b), (c, d) ] = 2 if and only if

dG1(a, c) + dG2(b, d) = 2.

It implies that d(G1 ×G2, 2) = d1v2 + d2v1 + 2e1e2.
Assume that the result holds for k. Then

d(

k+1∏
i=1

Gi, 2) = d(

k∏
i=1

Gi, 2)vk+1 + d(Gk+1, 2)(

k∏
j=1

vj) + 2e(

k∏
i=1

Gi)(ek+1)

=

k∑
i=1

[di

k∏
j=1,j ̸=i

vj ]vk+1 + (dk+1)(

k∏
j=1

vj)

+ 2vk+1[
∑

i,j∈Ak,i<j

eiej
∏
l̸=i,j

vl ] + 2[

k∑
i=1

(ei

k∏
i=1,i̸=j

vj)](ek+1)

= [

k+1∑
i=1

di

k+1∏
j=1,j ̸=i

vj ] + 2[
∑

i,j∈Ak+1,i<j

eiej
∏
l̸=i,j

vl ],
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proving the lemma. �

Theorem 2.3. Let G1, G2, ..., Gk be connected graphs. Then we have:

WP (
k∏

i=1

Gi) =
k∑

i=1

(wi

k∏
j=1,j ̸=i

vj) + 2
∑

i ̸=j,i,j∈Ak

(eidj
∏

l∈Ak−{i,j}

vl)

+ 4
∑

(i,j,l∈Ak),i<j<l

(eiejel
∏

p∈Ak−{i,j,l}

vp)

in which Ak = {1, 2, ..., k}, ei = |E(Gi)|, di = d(Gi, 2), vi = |V (Gi)| and
wi = Wp(Gi).

Proof. By induction on k. If k = 2 then dG1×G2 [ (a, b), (c, d) ] = 3. Therefore,
one of the following holds:

(1) Let [dG1(a, c) = 3, b = d]. In this case the number of pairs in G1 × G2

with distance 3 is equal to w1.v2.
(2) Let dG2(b, d) = 3, a = c. In this case the number of pairs in G1 × H2

with distance 3 is equal to w2.v1.
(3) Let [dG1(a, c) = 2, bd ∈ E(G2)]. In this case the number of pairs in

G1 ×G2 at distance 3 is equal to 2e2.d1.
(4) Let [dG2(b, d) = 2, ac ∈ E(G1)]. In this case the number of pairs in

G1 ×G2 at distance 3 is equal to 2e1.d2.

Therefore, WP (G1 × G2) = w2.v1 + w1.v2 + 2e2.d1 + 2e1d2. Assume that the
result holds for k. Then the Lemma 2.2 implies that

Wp(

k+1∏
i=1

Gi) = Wp(Gk+1)[|V (

k∏
i=1

Gi)|] + [Wp(

k∏
i=1

Gi)]vk+1 + 2[ek+1].d(

k∏
i=1

Gi, 2) + 2dk+1|E(

k∏
i=1

Gi)|

= wk+1(

k∏
i=1

vi) + {
k∑

i=1

(wi

k∏
j=1,j ̸=i

vj) + 2
∑

i ̸=j,i,j∈Ak

(eidj

∏
l∈Ak−{i,j}

vl)

+ 4
∑

(i,j,l∈Ak),i<j<l

(eiejel
∏

p∈Ak−{i,j,l}

vp)}vk+1 + 2ek+1{
k∑

i=1

[di

k∏
j=1,j ̸=i

vj ]

+ 2
∑

i,j∈Ak,i<j

[eiej
∏

l̸=i,j

vl ]} + 2dk+1{
k∑

i=1

[ei

k∏
i=1,i ̸=j

vj ]}

= {wk+1(

k∏
i=1

vi) + vk+1

k∑
i=1

wi[

k∏
j=1,j ̸=i

vj ]} + [2vk+1

∑
i ̸=j,i,j∈Ak

(eidj

∏
l∈(Ak−{i,j})

vl)]

+ [ 2dk+1

k∑
i=1

ei

k∏
j=1,j ̸=i

vj ] + {4ek+1[
∑

i,j∈Ak,i<j

eiej
∏

l̸=i,j

vl ]

+ [2ek+1

k∑
i=1

di

k∏
j=1,j ̸=i

vj ] + 4vk+1[
∑

(i,j,l∈Ak),i<j<l

(eiejel
∏

p∈[(Ak)−i,j,l]

vp)]}

=

k+1∑
i=1

(wi

k+1∏
j=1,j ̸=i

vj) + 2
∑

i̸=j,i,j∈Ak+1

(eidj

∏
l∈Ak+1−{i,j}

vl)

+ 4
∑

(i,j,l∈Ak+1),i<j<l

(eiejel
∏

p∈Ak+1−{i,j,l}

vp).
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This completes the proof. �

Define Qn to be the n−dimentional cube. Then Qn is isomorphic to the
Cartesian product of n copies of K2. Apply Theorem 2.3, we have:

Wp(Qn) = Wp(
n∏

i=1

K2) = 4
∑

(i,j,l∈An),i<j<l

(eiejel
∏

p∈An−{i,j,l}

vp)

= 4
∑

(i,j,l∈An),i<j<l

(2n−3) = 4

(
n

3

)
× 2n−3 =

(
n

3

)
× 2n−1.

We now define R = Pm ×Cn and S = Cm ×Cn. The graphs R and S are called
C4−nanotube and C4−nanotorus.

Corollary 2.4. WP (R) = nm+n(m−3) + 2(m−2)n+2n(m−1) = 6mn−9n
and WP (S) = 6mn− 3(m+ n) .

Theorem 2.5. Let G and H be two connected graphs. Then

Wp(G⊙H) = Wp(G).

|V (H)|+ |E(H)|+
|H|∑
i=1

(
(di)

2

)
+Wp(H).

|V (G)|+ |E(G)|+
|G|∑
i=1

(
(di)

2

)+Wp(G).Wp(H).

Proof. We first notice that the following equality holds:

dG⊙H((a, b), (c, d)) = Max[dG(a, c), dH(b, d)],

see [26] for details. Next we assume that dG⊙H [(a, b), (c, d)] = 3. Therefore at
least one of the following holds:

(1) Let dH(b, d) = 3, a = c. In this case the number of pairs in G ⊙ H by
distance 3 is equal to Wp(H).|V (G)|.

(2) Let dH(b, d) = 3, ac ∈ E(G). In this case the number of pairs in G⊙H
with distance 3 is equal to Wp(H).|E(G)|.

(3) Let dH(b, d) = 3, dG(a, c) = 2. In this case the number of pairs in G⊙H

at distance 3 is equal to Wp(H).[
∑|G|

i=1

(
di

2

)
].

(4) Let dG(a, c) = 3, b = d. In this case the number of pairs in G ⊙ H at
distance 3 is equal to Wp(G)|V (H)|.

(5) Let dG(a, c) = 3, bd ∈ E(H). In this case the number of pairs in G⊙H
at distance 3 is equal to Wp(G)|E(H)|.

(6) Let dH(b, d) = 2, dG(a, c) = 3. In this case the number of pairs in G⊙H

at distance 3 is equal to Wp(G).[
∑i=|H|

i=1

(
di

2

)
].

(7) Let dG(a, c) = 3, dH(b, d) = 3. In this case the number of pairs in G⊙H
at distance 3 is equal to Wp(G).Wp(H).
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Therefore,

Wp(G⊙H) = Wp(G).

|V (H)|+ |E(H)|+
|H|∑
i=1

(
di
2

)
+Wp(H).

|V (G)|+ |E(G)|+
|G|∑
i=1

(
di
2

)+Wp(G).Wp(H).

This completes the proof. �

The graph H is called strongly triangular if for every pair u, v ∈ V (H) there
exists a vertex w adjacent to both of them. The number of triangles in G is
denoted by tG.

Theorem 2.6. Let G and H be simple connected graphs, where H is a strongly
triangular graph. Then the Wiener polarity index of tensor product G ⊗ H is
equal to WP (G).|V (H)|2 + [(|E(G)| − 3tG)(|V (H)2 − |E(H)|)].

Proof. By [22, Theorem 2], dG⊗H((a, b), (c, d)) is computed as follows:

dG⊗H((a, b), (c, d)) =


2 [(ac ∈ E(G)) , (bd /∈ E(H)) , (ac ∈ Tri(G))]

or [(ac ∈ E(G)) , (b = d) , (ac ∈ Tri(G))] or [a = c]
3 [(ac ∈ E(G)) , (bd /∈ E(H)) , (ac /∈ Tri(G))]

or [(ac ∈ E(G)) , (b = d) , (ac /∈ Tri(G))]
dG(a, c) Otherwise

,

in which Tri(G) is the set of all edges in triangles in G. Our main proof will
consider the following two cases:

Case 1: Suppose dG⊗H((a, b), (c, d)) = 3. Then [(ac ∈ E(G)) , (bd /∈
E(H)) , (ac /∈ Tri(G))] or [(ac ∈ E(G)) , (b = d) , (ac /∈ Tri(G))]. Let
tG be the number of triangles in G. If ac /∈ Tri(G) then the number of such
edges are equal to 3 · tG. This implies that the number of pairs a, c ∈ E(G)
is equal to |E(G)| − 3tG. Similarly, the number of vertices b and d such that
bd ∈ E(H) is (|V (H)2) − |E(H)|. Therefore, the number of pairs (a, c), (b, d)
with WP (G⊗H) = 3 is [|E(G)| − 3tG][(|V (H)2)− |E(H)|].

Case 2: Suppose dG⊗H((a, b), (c, d)) = dG(a, c) = 3. Then the number of pairs
(a, c), (b, d) such that WP (G ⊗ H) = 3 is WP (G).|V (H)|2. So, Wp(G ⊗ H) =
WP (G).|V (H)|2 + [(|E(G)| − 3tG)(|V (H)2 − |E(H)|)], proving the theorem. �

We now consider the corona product of graphs.

Theorem 2.7. Let G and H be graphs. Then the Wiener polarity index of GoH

is equal to Wp(G) +
∑|G|

i=1 ti + |E(G)|.|V (G)|2 in which ti = |(
∪

b∈N(vi)
[N(b) −

N(vi)])| − 1.
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Proof. We note that dGoH(a, b) is computed as follows:

dGoH(a, b) =


0 a = c
dG(a, b) (a ̸= b) , (a, b ∈ V (G))
2, or, 1 (a ̸= b) , (a, b ∈ Hi)
dG(a, vi) + 1 (a ∈ V (G)) , (b ∈ Hi)
dG(vi, vj) + 2 (b ∈ V (Hj)) , (a ∈ Hi)

.

We now assume that dGoH(a, b) = 3. Therefore at least one of the following
hold:

(1) Let (a ̸= b) , (a, b ∈ V (G)). In this case the number of pairs in GoH at
distance 3 is equal to WP (G).

(2) Let (a ∈ V (G)) , (b ∈ Hi). In this case the number of pairs in GoH with

distance 3 is equal to
∑|G|

i=1 ti in which ti is the number of vertices in G
by distance 3 from vi, it is equal to ti = |(

∪
b∈N(vi)

[N(b)−N(vi)])| − 1.

(3) Let (b ∈ V (Hj)) , (a ∈ Hi). In this case the number of pairs in GoH at
distance 3 is equal to |E(G)|.|V (G)|2.

Therefore, Wp(GoH) = Wp(G) +
∑|G|

i=1 ti + |E(G)|.|V (G)|2. �
Let G and H be two connected graphs, u ∈ V (G) and v ∈ V (H). The linked

graph K is a graph with V (K) = [(V (G)) ∪ (V (H))] and E(K) = (E(G)) ∪
(E(H)) ∪ {uv}, Figure 1. We end the paper by the following theorem:

Theorem 2.8. Wp(K) = Wp(G) + Wp(H) + degG(u)degH(v) + dG(u, 2) +
dH(v, 2).

Figure 1. The Link of the Graphs G and H.

The link is an important graph operation with some application in chemistry.
The models of some complex molecules can be built from simpler building block
by iterating combining the link operation, see [6]. Let G and H be two simple
and connected graphs with disjoint vertex sets and a, b ∈ V (G) and c, d ∈ V (H).
A link of G and H by a and c is defined as the graph (G H)(a; c) obtained by
joining the vertices a and c by an edge. Similarly, a double link of G and H by
(a, c) and (b, d) is defined as the graph (G H)(a, b : c, d) obtained by joining a
and c by an edge and b and d by another edge. A link and double link of two
graphs are shown schematically in Figures 1 and 2.

Theorem 2.9. Suppose that G and H are connected graphs and a, b ∈ V (G)
and c, d ∈ V (H). Set L1 = (G H)(a; c) and (G H)(a, b : c, d). Then
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Figure 2. The Double Link of the Graphs G and H.

• Wp(L1) = Wp(G) +Wp(H) + dG(a, 2) + dH(b, 2) + degG(a)degH(b).
• Wp(L2) = Wp(G) +Wp(H) + dG(a, 2) + dH(b, 2) + dG(c, 2) + dH(d, 2) +
degG(a)degH(b) + degG(c)degH(d)− |NG(a)∩NG(c)| · |NG(c)∩NH(d)|.

Proof. The first equality is a direct consequence of definition. To prove second,
we consider three different cases as follows:

• Two vertices are chosen from G. The number of such pairs of distance
3 is equal to Wp(G).

• Two vertices are chosen from H. The number of such pairs of distance
3 is equal to Wp(H).

• One vertex is chosen from G and another from H. We have to count
the number of pairs of vertices x, y of distance 3. To do this, we consider
six subcases as follows:

x = a and y ∈ H. The number of such pairs are equal to dH(b, 2).
x ∈ G and y = b. The number of such pairs are equal to dG(a, 2).
x = c and y ∈ H. The number of such pairs are equal to dH(d, 2).
x ∈ G and y = d. The number of such pairs are equal to dG(c, 2).
x ∈ NG(a) and y ∈ NH(b). The number of such pairs are equal to

degG(a) · degH(b).
x ∈ NG(c) and y ∈ NH(d). The number of such pairs are equal to

degG(c) · degH(d).

Notice that in last two cases the vertices in NG(a) ∩NG(c) and NG(b) ∩NH(d)
are counted twice. This completes our argument. �

Fullerenes are carbon cage molecules having 12 pentagonal and (n/2 − 10)
hexagonal faces, where 20 ≤ n(̸= 22) is an even integer. The discovery of the
fullerene C60 in 1985 by Kroto and Smalley revealed a new form of existence of
carbon element other than graphite, diamond and amorphous carbon [23, 24].
In the end of this paper, we apply Theorem 2.9 to compute the Wiener polarity
index of a polybuckyball, Figure 3. The molecular graph of a polybuckyball is
instructed by operations link or double link on the same IPR fullerene graphs
on 60 vertices.

Corollary 2.10. The Wiener polarity index of the first and second type poly-
buckyballs, that is made by n copies of C60 fullerene by operations link or double
link is equal to 561n− 615 and 294n− 54, respectively.
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Figure 3. The Molecular Graph of a Polybuckyball a) of the
first type; b) of the second type.
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