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COMBINATORIAL PROOF FOR THE POSITIVITY
OF THE ORBIT POLYNOMIAL 0" (g)f

JAEJIN LEE

ABSTRACT. The cyclic group Cy, = ((12---n)) acts on the set ([z]) of all
k-subsets of [n]. In this action of C, the number of orbits of size d, for

d|n,is
B_1 e (0 (s
O;L _dQ; u(n)<k/s)
dsn

Stanton and White[7] generalized the above identity to construct the orbit

polynomials
1 ds n/s
04 (q) = dow (f) [ }
[d]qn/d 2an n k/s a*

and conjectured that Os’k(q) have non-negative coefficients. In this paper
we give a combinatorial proof for the positivity of coefficients of the orbit
polynomial 03’3(q).
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1. Introduction
When n is a positive integer, we write as [n] = {1,2,...,n}. Let C,, be the
cyclic group generated by a permutation o = (12---n). If ([Z]) is the set of all
k-subsets of [n], C), acts on ([Z]) via
(T Az, 22, o)) = {Zr(1), T (2)s -+ Tr() )
The number of orbits in this action of C), is given

ot =1 % wta(}) 1)

d|ged(n,k)
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and the number of orbits of size d, for d | n, is
nk 1 ds\ (n/s
k= = . 2
o =5 X (=) (o 2)
qd s|n

See [2]. Here ¢ is the Euler phi-function and x is the Mébius function. Stanton
and White [7] constructed orbit polynomials Og’k(q), a g-version of (2), and
conjectured the following.

Conjecture 1. Fix d | n, and any non-negative integer k. Polynomials

o= = n(%) 1]

q" %|s\n

have non-negative coefficients.

Here, [n]y =1+¢q+ -+ ", [n]ly = [1]4[2]4 - - - [n]q and

Mobius inversion implies

] = Yi0it) 0

d|n

Andrews(1] and Haiman[4] independently verified the above Conjecture 1 when
(n,k) = 1. In [5] Reiner, Stanton and White defined the cyclic sieving phenome-
non, generalization of Stembridge’s ¢ = —1 phenomenon [8], and use it to prove
several enumeration problems involving ¢-binomial coefficients, non-crossing par-
titions, polygon dissections and some finite field g-analogues. Drudge [3] has
proven that O™*(q) = > din Og’k(q) is the number of orbits of the Singer cycle
on the k-dimensional subspaces of an n-dimensional vector space over a field
of order gq. Recently Sagan [6] gave combinatorial proofs for several theorems
appeared in [5].

In this paper we give a new weight for each 3-subset in ([g])7 and show that
the sum of weights of all 3-subset in ([g]) is equal to the g-binomial coefficient

[g} . This will give a combinatorial proof for the positivity of coefficients of
q

the orbit polynomial 0% (q).

2. Positivity for the orbit polynomial OZ,S(q)
In this section we write as ijk = {i,J,k} for convention. We begin with

the recurrence relation of g-binomial coefficient 3 Using the recurrence

q
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relations

several times, we get the following identity.

Proposition 1. Let n > 3 be an integer. Then

{nf]qqﬁ[g]qw"w V;LHH(J%11q>[n+31q-

We now describe the representatives x of orbits in the action of of C;, on ([g]).
In each orbit O under C,, we choose 1ij € O as the representative of O, where

1<i§§+1and2i—l§j§n+1—i. (4)

For example, if n = 7, all orbits are given with representatives underlined as
follows.

Oy = (123) = {123,234, 345, 456, 567, 167, 127}
0, = (124) = {124,235, 346,457, 156, 267, 137}
03 = (125) = {125, 236, 347, 145, 256, 367, 147}
O, = (126) = {126,237, 134, 245, 356, 467, 157}

Os = (135) = {135, 246, 357, 146, 257, 136, 247}.

Let 1ij be the representative of an orbit under C),,. We define the weight
wy(1ij) as

1 if3|nandi=1+2%j=1+2
wp(lif) =< ¢* 7273 if3|nand j=n+1—1i (5)
g2 Hi=2—4 glge.

The weights for the other elements than the representatives are given using the
weights of representatives in (5).

Assume first ged(n,3) = 1. Note that all orbits are of size n by (1) and (2).
If O; = {s1,%i2,. .., Ti(n—1), Tin} is an orbit of size n with the representative
;1 and with the action

Til L> Ti2 i> ce L) Ti(n—-1) L) Tin L) Tily
we define
Wy (Tij41) = qup(a;;) for 1 < j <n-—1. (6)
If ged(n, 3) # 1, there is only one orbit of size n/3 and the other orbits are of
size n under the action of C,,. The weights for elements in an orbit of size n are



458 Jaejin Lee

defined in the same way as (6). On the other hand, if Oy = {01, 02, - - -, Zo(n/3) }
is the orbit of size n/3 with the representative x; and with the action

o o g g
Tolr —> Xp2 —> " —7 To(n/3) — Tol,

we define
on
Wy (20j41) = ¢wn(20;) for 1 < j < 3~ L.
Then the sum of weights of all elements in ([g]) is equal to the g-binomial coef-

ficient [ g } as follows.

q

Theorem 1. Let n > 3 be an integer and let T, be the set of all 3-subsets of
[n], i.e., T, = ([QL]). If we set w,(T),) = er([n]) w(x), then we have
3

wn(T,) = [g]q

Proof. We only work out for n = 3¢ + 1. The proofs for n = 3¢ and n = 3¢ + 2
can be given in the same way with a little modification.
n

Computing w, (T},) and [ 3

] for n = 3,4, 5 directly, we have
q

3 4
ws(T3) = 1= [3} s wi(Ty) =14+ q+ ¢ +¢° = [3}
q

q

5
ws(T5) = 1+q+2¢° +2¢° +2¢" +¢° +¢° = {3}
q

Suppose now n = 3¢+1 and w, (T,,) = [ n] . Since ged(n, 3) = ged(n+3,3) =1,

3
q
all orbits under C), are of size n and all orbits under C, 3 are of size n + 3. Let

L11,2215---,Ls1

be all representatives of orbits in the action of C,,, where

s = |T0| /]orbit| = <§> /n = %(n —1)(n—2).

Let
T11,2215- -5 Tsly L(s41)15- -5 Tt1

be all representatives of orbits in the action of C,, ;3. Here,

t= <n§3>/(n+3)é(n+l)(n+2).



Combinatorial proof for the positivity of the orbit polynomial O:l“a(Q) 459

Then all orbits under C), are as follows,

Ol = {1’11,£C12, oo axl(n—l)vxln}
Og = {721,722, .-, T2(n—1), T2n}
(7)
Os = {xsly Ts2,---3Ts(n—1), msn}
while )
O] =A{z11,712,. .. 7931(n—1)75171n,931(n+1),$1(n+2),171(n+3)}
0/2 = {x21,722,... y L2(n—1)1 L2ny L2(n+1)s L2(n+2)» $2(n+3)}
O/ = {zeh Ts2y. -3 Tsg(n—1)y Lsns Ts(n+1)) Ls(n+2)s xs(n+3)} (8)
Of i1 = {Z(s1)1s -+ 5 T(st Dyns T(s 1) (n41)5 - -+ T(s41) (n+3) }
OQ = {1, T2, .. y Lt(n—1)s Ttny Lt(n41)s Lt(n+2), il?t(n+3)}

are all orbits under C, 3. Let x be the representative of an orbit under the
action of C),. x can be also the representative of an orbit under the action of
Cr+3. In this case,

Wny3(T) = q6wn (z).
For example, = = 123 € (1) is the representative of an orbit under the action
of C,,. The weight of z is

wn(x) :q2n+2 2-3—4 q2 8.

Also, o = 123 can be considered in T 43 = ("1%) and the weight w,43(z) is

2 3)+2—-2-3—4 2n—2
wnps(z) = @Y =q"7,

so that w,3(x) = ¢%w,(x). Another 3-subset 234 = (123) is considered as the
element of T),13 as well as T,,. The weight of 234 is

wn(234) = qw,(123) and  w,43(234) = quw,45(123)

so that w,13(234) = ¢%w,(234). Using this relation we compute w;,13(Ty13)-
From (7) and assumption we have

(T =Y 3 wale) = Y wntea)iy = ratalaly = [ ]
i=1xz€0; =1 q

where r,,(q) is the sum of weights of representatives of all orbits of size n. On
the other hand, if we use (8), we have

wn+3 n+3 E § wn+3 E § wn+3 E E wn+3

=1 z€O)] =1 z2€O] t=s+1x€O]
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Here
S s n+3 S
DD wars(@) =D D warslwiy) = Y ways(wa)n+ 3]
i=1 z€0) i=1 j=1 i=1

= Z ¢Cwn (xi1)([n]g + ¢"[3]y)

= ¢°rn(@)[nlg + 4" Ora(9)[3] (9)

Lol

6 n n+6 n — 1
= [5] e,
q q
Using (4) we can find the representatives of all orbits under of C,, 3. In partic-
ular, for 2 <a </£+41,

la(n —a+2), la(n —a+3), la(n —a+4), 1(£+2)(2¢+ 3)

are the representatives of orbits in the action of C), 3 which are not in orbits of
the action of C,. Using the weights given in (5) and (6)

t +1
Z Z wn+3(x) — (Z(q3a—2 + q3a—4 + qBa—ﬁ) + q3€> [n+3]q

i=s+12€0! a=2

14
_ (Z(q3a+1 _|_q3a71 _|_q3a73) +q3€> [n+3}q (10)

a=1
=1+ +¢@+ - +q¢")n+3],
= (1 —|—q2[n - 1]q)[n+3]q~

Combining (9) and (10), we have

T = || 00 ["31] 0 e+ 5

o {n—&-i’)

3 ] from Proposition 1.
q

Hence we have w, (T,) = {g} for n > 3. O
q

Theorem 2. Orbit polynomials O™>(q) is equal to the sum of weights of repre-
sentatives of all orbits of size n.
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Proof. Assume first ged(n,3) = 1. Then there are only s orbits of size n under
C,, where s = (g) /n. Let O1,0a,,...,0q be all orbits of size n under C,,. Then
from the proof of Theorem 1 we know that

wn(Tn) = Tn(‘])[n}qv (11)

where 7, (q) is the sum of weights of representatives of all orbits of size n.
Assume now ged(n, 3) # 1. Then there are s orbits O1,Oa, ..., Oy of size n
with where s = ((§) — %)/n, and there is only one orbit
Oo = {01, %02, -+, To(n/3)
of size n/3. Hence

S

wn(T) = Z wy(r) = Z wp () +Z Z wy(7)

me([g]) z€0g i=1x€0;
- 12
i=1
n
= [§:| - + rn(Q)[n]%
where 7,(¢q) is the sum of weights of representatives of all orbits of size n.
From (3), we have
3, 18], 05°(a) + [n], O053(q) if ged(n,3) # 1.
Note that O%’g(q) = 1. Comparing (11) and (12) with (13), we have
0(a) = ra(a)-

U

Corollary 1. Let d | n. Then orbit polynomials OZ’S(q) have non-negative
coefficients.

Proof. Since OZ/]i(q) = O:?:’k/t(qt), it is sufficient to prove Corollary 1 for d = n.
Let r,(q) be the sum of weights of representatives of all orbits of size n. Then
O"3(q) = rn(q) by Theorem 2 and r,(q) clearly has non-negative coefficients
from the definition. U
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