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COMBINATORIAL PROOF FOR THE POSITIVITY

OF THE ORBIT POLYNOMIAL On,3
d (q)†

JAEJIN LEE

Abstract. The cyclic group Cn = ⟨(12 · · ·n)⟩ acts on the set
([n]

k

)
of all

k-subsets of [n]. In this action of Cn the number of orbits of size d, for

d | n, is

On,k
d =

1

d

∑
n
d
|s|n

µ

(
ds

n

)(n/s
k/s

)
.

Stanton and White[7] generalized the above identity to construct the orbit

polynomials

On,k
d (q) =

1

[d]qn/d

∑
n
d
|s|n

µ

(
ds

n

)[
n/s

k/s

]
qs

and conjectured that On,k
d (q) have non-negative coefficients. In this paper

we give a combinatorial proof for the positivity of coefficients of the orbit

polynomial On,3
d (q).
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Key words and phrases : q-binomial coefficient, cyclic group, action, orbit,

orbit polynomial.

1. Introduction

When n is a positive integer, we write as [n] = {1, 2, . . . , n}. Let Cn be the

cyclic group generated by a permutation σ = (12 · · ·n). If
(
[n]
k

)
is the set of all

k-subsets of [n], Cn acts on
(
[n]
k

)
via

(τ, {x1, x2, . . . , xk}) 7→ {xτ(1), xτ(2), . . . , xτ(k)}.
The number of orbits in this action of Cn is given

On,k =
1

n

∑
d|gcd(n,k)

φ(d)

(
n/d

k/d

)
, (1)
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and the number of orbits of size d, for d | n, is

On,k
d =

1

d

∑
n
d |s|n

µ

(
ds

n

)(
n/s

k/s

)
. (2)

See [2]. Here φ is the Euler phi-function and µ is the Möbius function. Stanton

and White [7] constructed orbit polynomials On,k
d (q), a q-version of (2), and

conjectured the following.

Conjecture 1. Fix d | n, and any non-negative integer k. Polynomials

On,k
d (q) =

1

[d]qn/d

∑
n
d |s|n

µ

(
ds

n

)[
n/s
k/s

]
qs

have non-negative coefficients.

Here, [n]q = 1 + q + · · ·+ qn−1, [n]!q = [1]q[2]q · · · [n]q and[
n
k

]
q

=
[n]!q

[k]!q[n− k]!q
.

Möbius inversion implies [
n
k

]
q

=
∑
d|n

[d]qn/dO
n,k
d (q). (3)

Andrews[1] and Haiman[4] independently verified the above Conjecture 1 when
(n, k) = 1. In [5] Reiner, Stanton and White defined the cyclic sieving phenome-
non, generalization of Stembridge’s q = −1 phenomenon [8], and use it to prove
several enumeration problems involving q-binomial coefficients, non-crossing par-
titions, polygon dissections and some finite field q-analogues. Drudge [3] has

proven that On,k(q) =
∑

d|n O
n,k
d (q) is the number of orbits of the Singer cycle

on the k-dimensional subspaces of an n-dimensional vector space over a field
of order q. Recently Sagan [6] gave combinatorial proofs for several theorems
appeared in [5].

In this paper we give a new weight for each 3-subset in
(
[n]
3

)
, and show that

the sum of weights of all 3-subset in
(
[n]
3

)
is equal to the q-binomial coefficient[

n
3

]
q

. This will give a combinatorial proof for the positivity of coefficients of

the orbit polynomial On,3
d (q).

2. Positivity for the orbit polynomial On,3
d (q)

In this section we write as ijk = {i, j, k} for convention. We begin with

the recurrence relation of q-binomial coefficient

[
n
3

]
q

. Using the recurrence
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relations [
n
k

]
q

= qk
[
n− 1
k

]
q

+

[
n− 1
k − 1

]
q

and[
n
k

]
q

=

[
n− 1
k

]
q

+ qn−k

[
n− 1
k − 1

]
q

several times, we get the following identity.

Proposition 1. Let n ≥ 3 be an integer. Then[
n+ 3
3

]
q

= q6
[
n
3

]
q

+ qn+6

[
n− 1
2

]
q

+ (1 + q2[n− 1]q)[n+ 3]q.

We now describe the representatives x of orbits in the action of of Cn on
(
[n]
3

)
.

In each orbit O under Cn we choose 1ij ∈ O as the representative of O, where

1 < i ≤ n

3
+ 1 and 2i− 1 ≤ j ≤ n+ 1− i. (4)

For example, if n = 7, all orbits are given with representatives underlined as
follows.

O1 = ⟨123⟩ = {123, 234, 345, 456, 567, 167, 127}
O2 = ⟨124⟩ = {124, 235, 346, 457, 156, 267, 137}
O3 = ⟨125⟩ = {125, 236, 347, 145, 256, 367, 147}
O4 = ⟨126⟩ = {126, 237, 134, 245, 356, 467, 157}
O5 = ⟨135⟩ = {135, 246, 357, 146, 257, 136, 247}.

Let 1ij be the representative of an orbit under Cn. We define the weight
wn(1ij) as

wn(1ij) =


1 if 3 | n and i = 1 + n

3 , j = 1 + 2n
3

q2n+i−2j−3 if 3 | n and j = n+ 1− i

q2n+i−2j−4 else.

(5)

The weights for the other elements than the representatives are given using the
weights of representatives in (5).

Assume first gcd(n, 3) = 1. Note that all orbits are of size n by (1) and (2).
If Oi = {xi1, xi2, . . . , xi(n−1), xin} is an orbit of size n with the representative
xi1 and with the action

xi1
σ−→ xi2

σ−→ · · · σ−→ xi(n−1)
σ−→ xin

σ−→ xi1,

we define
wn(xij+1) = qwn(xij) for 1 ≤ j ≤ n− 1. (6)

If gcd(n, 3) ̸= 1, there is only one orbit of size n/3 and the other orbits are of
size n under the action of Cn. The weights for elements in an orbit of size n are
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defined in the same way as (6). On the other hand, if O0 = {x01, x02, . . . , x0(n/3)}
is the orbit of size n/3 with the representative x01 and with the action

x01
σ−→ x02

σ−→ · · · σ−→ x0(n/3)
σ−→ x01,

we define

wn(x0j+1) = q3wn(x0j) for 1 ≤ j ≤ n

3
− 1.

Then the sum of weights of all elements in
(
[n]
3

)
is equal to the q-binomial coef-

ficient

[
n
3

]
q

as follows.

Theorem 1. Let n ≥ 3 be an integer and let Tn be the set of all 3-subsets of

[n], i.e., Tn =
(
[n]
3

)
. If we set wn(Tn) =

∑
x∈([n]

3 )
w(x), then we have

wn(Tn) =

[
n
3

]
q

.

Proof. We only work out for n = 3ℓ+ 1. The proofs for n = 3ℓ and n = 3ℓ+ 2
can be given in the same way with a little modification.

Computing wn(Tn) and

[
n
3

]
q

for n = 3, 4, 5 directly, we have

w3(T3) = 1 =

[
3
3

]
q

, w4(T4) = 1 + q + q2 + q3 =

[
4
3

]
q

w5(T5) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 =

[
5
3

]
q

.

Suppose now n = 3ℓ+1 and wn(Tn) =

[
n
3

]
q

. Since gcd(n, 3) = gcd(n+3, 3) = 1,

all orbits under Cn are of size n and all orbits under Cn+3 are of size n+3. Let

x11, x21, . . . , xs1

be all representatives of orbits in the action of Cn, where

s = |Tn|/|orbit| =
(
n

3

)
/n =

1

6
(n− 1)(n− 2).

Let

x11, x21, . . . , xs1, x(s+1)1, . . . , xt1

be all representatives of orbits in the action of Cn+3. Here,

t =

(
n+ 3

3

)
/(n+ 3) =

1

6
(n+ 1)(n+ 2).
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Then all orbits under Cn are as follows,

O1 = {x11, x12, . . . , x1(n−1), x1n}
O2 = {x21, x22, . . . , x2(n−1), x2n}
...

Os = {xs1, xs2, . . . , xs(n−1), xsn}

(7)

while
O′

1 = {x11, x12, . . . , x1(n−1), x1n, x1(n+1), x1(n+2), x1(n+3)}
O′

2 = {x21, x22, . . . , x2(n−1), x2n, x2(n+1), x2(n+2), x2(n+3)}
...

O′
s = {xs1, xs2, . . . , xs(n−1), xsn, xs(n+1), xs(n+2), xs(n+3)}

O′
s+1 = {x(s+1)1, . . . , x(s+1)n, x(s+1)(n+1), . . . , x(s+1)(n+3)}

...

O′
t = {xt1, xt2, . . . , xt(n−1), xtn, xt(n+1), xt(n+2), xt(n+3)}

(8)

are all orbits under Cn+3. Let x be the representative of an orbit under the
action of Cn. x can be also the representative of an orbit under the action of
Cn+3. In this case,

wn+3(x) = q6wn(x).

For example, x = 123 ∈
(
[n]
3

)
is the representative of an orbit under the action

of Cn. The weight of x is

wn(x) = q2n+2−2·3−4 = q2n−8.

Also, x = 123 can be considered in Tn+3 =
(
[n+3]

3

)
and the weight wn+3(x) is

wn+3(x) = q2(n+3)+2−2·3−4 = q2n−2,

so that wn+3(x) = q6wn(x). Another 3-subset 234 = σ(123) is considered as the
element of Tn+3 as well as Tn. The weight of 234 is

wn(234) = qwn(123) and wn+3(234) = qwn+3(123)

so that wn+3(234) = q6wn(234). Using this relation we compute wn+3(Tn+3).
From (7) and assumption we have

wn(Tn) =
s∑

i=1

∑
x∈Oi

wn(x) =
s∑

i=1

wn(xi1)[n]q = rn(q)[n]q =

[
n
3

]
q

,

where rn(q) is the sum of weights of representatives of all orbits of size n. On
the other hand, if we use (8), we have

wn+3(Tn+3) =
t∑

i=1

∑
x∈O′

i

wn+3(x) =
s∑

i=1

∑
x∈O′

i

wn+3(x) +
t∑

i=s+1

∑
x∈O′

i

wn+3(x).
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Here

s∑
i=1

∑
x∈O′

i

wn+3(x) =
s∑

i=1

n+3∑
j=1

wn+3(xij) =
s∑

i=1

wn+3(xi1)[n+ 3]q

=

s∑
i=1

q6wn(xi1)([n]q + qn[3]q)

= q6rn(q)[n]q + qn+6rn(q)[3]q

= q6
[
n
3

]
q

+ qn+6

[
n
3

]
q

[n]q
[3]q

= q6
[
n
3

]
q

+ qn+6

[
n− 1
2

]
q

.

(9)

Using (4) we can find the representatives of all orbits under of Cn+3. In partic-
ular, for 2 ≤ a ≤ ℓ+ 1,

1a(n− a+ 2), 1a(n− a+ 3), 1a(n− a+ 4), 1(ℓ+ 2)(2ℓ+ 3)

are the representatives of orbits in the action of Cn+3 which are not in orbits of
the action of Cn. Using the weights given in (5) and (6)

t∑
i=s+1

∑
x∈O′

i

wn+3(x) =

(
ℓ+1∑
a=2

(q3a−2 + q3a−4 + q3a−6) + q3ℓ

)
[n+ 3]q

=

(
ℓ∑

a=1

(q3a+1 + q3a−1 + q3a−3) + q3ℓ

)
[n+ 3]q

= (1 + q2 + q3 + · · ·+ qn)[n+ 3]q

= (1 + q2[n− 1]q)[n+ 3]q.

(10)

Combining (9) and (10), we have

wn+3(Tn+3) = q6
[
n
3

]
q

+ qn+6

[
n− 1
2

]
q

+ (1 + q2[n− 1]q)[n+ 3]q

=

[
n+ 3
3

]
q

from Proposition 1.

Hence we have wn(Tn) =

[
n
3

]
q

for n ≥ 3. �

Theorem 2. Orbit polynomials On,3
n (q) is equal to the sum of weights of repre-

sentatives of all orbits of size n.
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Proof. Assume first gcd(n, 3) = 1. Then there are only s orbits of size n under
Cn, where s =

(
n
3

)
/n. Let O1, O2, . . . , Os be all orbits of size n under Cn. Then

from the proof of Theorem 1 we know that

wn(Tn) = rn(q)[n]q, (11)

where rn(q) is the sum of weights of representatives of all orbits of size n.
Assume now gcd(n, 3) ̸= 1. Then there are s orbits O1, O2, . . . , Os of size n

with where s = (
(
n
3

)
− n

3 )/n, and there is only one orbit

O0 = {x01, x02, . . . , x0(n/3)}

of size n/3. Hence

wn(Tn) =
∑

x∈([n]
3 )

wn(x) =
∑
x∈O0

wn(x) +
s∑

i=1

∑
x∈Oi

wn(x)

= (1 + q3 + · · ·+ qn−3) +

s∑
i=1

wn(xi1)[n]q

=
[n
3

]
q3

+ rn(q)[n]q,

(12)

where rn(q) is the sum of weights of representatives of all orbits of size n.
From (3), we have[

n
3

]
q

=

{
[n]q O

n,3
n (q) if gcd(n, 3) = 1[

n
3

]
q3
On,3

n
3

(q) + [n]q O
n,3
n (q) if gcd(n, 3) ̸= 1.

(13)

Note that On,3
n
3

(q) = 1. Comparing (11) and (12) with (13), we have

On,3
n (q) = rn(q).

�

Corollary 1. Let d | n. Then orbit polynomials On,3
d (q) have non-negative

coefficients.

Proof. Since On,k
n/t(q) = O

n/t,k/t
n/t (qt), it is sufficient to prove Corollary 1 for d = n.

Let rn(q) be the sum of weights of representatives of all orbits of size n. Then
On,3

n (q) = rn(q) by Theorem 2 and rn(q) clearly has non-negative coefficients
from the definition. �
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