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NUMERICAL SOLUTION OF A CLASS OF

TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL

EQUATIONS OF THE FIRST KIND

A. TARI∗ AND S. SHAHMORAD

Abstract. In this work, we investigate solving two-dimensional nonlinear
Volterra integral equations of the first kind (2DNVIEF). Here we convert

2DNVIEF to the two-dimensional linear Volterra integral equations of the
first kind (2DLVIEF) and then we solve it by using operational approach
of the Tau method. But for solving the 2DLVIEF we convert it to an
equivalent equation of the second kind and then by giving some theorems

we formulate the operational Tau method with standard base for solving
the equation of the second kind. Finally, some numerical examples are
given to clarify the efficiency and accuracy of presented method.
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1. Introduction

We consider two-dimensional nonlinear Volterra integral equations of the form∫ t

c

∫ x

a

K(x, t, y, z)H(v(y, z))dydz = f(x, t), (x, t) ∈ Ω = [a, b]× [c, d] (1)

where K and f are given analytic functions on Ω×Ω and Ω, respectively. Also, v
is the unknown function to be find and H is a nonlinear function in v. Here, we
assume that the function H has continuous inverse. Equations of the form (1)
arises in applied sciences such as physics and mechanic engineering (see [1-3]).

For solving equation (1), we set u(x, t) = H(v(x, t)), to obtain the linear
equation∫ t

c

∫ x

a

K(x, t, y, z)u(y, z)dydz = f(x, t), (x, t) ∈ Ω = [a, b]× [c, d] (2)
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with the new unknown function u(x, t).
Obviously we require satisfying the condition

f(x, c) ≡ 0, f(a, t) ≡ 0, ∀(x, t) ∈ Ω (3)

on the function f . We also require smoothness of the functions K(x, t, y, z) and
f(x, t) and the condition

K(x, t, x, t) ̸= 0, ∀(x, t) ∈ Ω (4)

to guarantee a unique solution for Eq.(2) (see [3]).
Numerical solution of equations of the form (2) has been investigated in lit-

erature. For example in [4], Bel’tyukov and Kuznechikhina proposed an explicit
Rung-Kutta-type method of order three. An interesting proof for the existence
and uniqueness of solution and an Euler-type method has been proposed for (2)
in [3]. Authors of [5] applied two dimensional block-pulse functions for solving
nonlinear Volterra integral equations of the first kind of the form (2).

In this paper, we are interested in solving differentiated form of equation (2) by
the operational approach of the Tau method. The operational Tau method (see
Ortiz [6], Ortiz and Samara [7] ) is a well known method for solving functional
equations. Up to now, this method has been developed for solving differential,
integral and integro-differential equations. For example see [6− 13] for ordinary
differential equations, [14 − 16] for partial differential equations. Particularly,
this method has been developed in [17 − 19] for the numerical solution of one
dimensional linear integral and integro-differential equations. Also it has been
developed for solving systems of integro-differential equations in [20− 21]. The
authors of [22] proposed an extension of the Tau method for the numerical solu-
tion of nonlinear Volterra-Hammerstein integral equations. Also, the authors of
[23] formulated the Tau method for solving the two-dimensional linear Fredholm
integral equations of the second kind.

2. Preliminaries

In this section, we briefly introduce the operational Tau method. This method
which was proposed by Ortiz and Samara [7], is based on the following three
simple matrices

µ =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

 , η =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 2 0 0 · · ·
0 0 3 0 · · ·
...

...
...

...
. . .

 ,

ι =


0 1 0 0 · · ·
0 0 1/2 0 · · ·
0 0 0 1/3 · · ·
...

...
...

...
. . .

 .
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We recall the following lemmas from ([7], [17]).

Lemma 2.1. Let yN (x) = aNX with aN = (a0, a1, ..., aN , 0, 0, ...) and X =
(1, x, x2, ...) be a polynomial, then
a. The effect of r repeated differentiation of yN (x) is equivalent to the post-
multiplication of aN by ηr, i.e.

dr

dxr
yN (x) = aNηrX.

b. The effect of s shifts on the coefficients of yN (x) is equivalent to the post-
multiplication of aN by µs, i.e.

xsyN (x) = aNµsX.

c. The effect of integration on yN (x) is equivalent to the post-multiplication of
aN by ι, i.e. ∫

yN (x)dx = aN ιX.

Corollary 2.2. With the assumptions of lemma 2.1, we have

a. xiX = µiX.

b.

∫
Xdx = ιX.

Lemma 2.3. If M = [mk,l] be an (N + 1)× (N + 1) matrix, then

(µjMµi)k,l =

{
mk+j,l−i, k = 1, 2, ..., N + 1− j, l = i+ 1, ..., N + 1

0, otherwise.
(5)

Lemma 2.4. For (N + 1)× (N + 1) matrix ι, we have

(µjιµi)k,k+i+j+1 =

{ 1
k+j , i, j, k = 1, 2, ..., N + 1, k + i+ j + 1 ≤ N + 1

0, otherwise.
(6)

3. Main results

In this section, we give some theorems and lemmas to write a matrix repre-
sentation for the integral equation

u(x, t) =

∫ t

c

∫ x

a

K1(x, t, y, z)u(y, z)dydz +

∫ t

c

K2(x, t, z)u(x, z)dz

+

∫ x

a

K3(x, t, y)u(y, t)dy + F (x, t) (7)

where

K1(x, t, y, z) = − ∂2K

∂x∂t
(x, t, y, z)/K(x, t, x, t)

K2(x, t, z) = −∂K

∂t
(x, t, x, z)/K(x, t, x, t)
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K3(x, t, y) = −∂K

∂x
(x, t, y, t)/K(x, t, x, t)

F (x, t) =
∂2f

∂x∂t
(x, t)/K(x, t, x, t)

which is obtained by differentiating from both sides of equation (2). Since inte-
gral equations of the first kind are inherently ill-posed problems, meaning that
an small change on the function f(x, t) make a very large change on the solu-
tion of (2) (see [24], we transform equation (2) to the equation (7). To show
the preference of this transformation, we will also formulate the operational Tau
method directly on some examples of the first kind integral equations. To covert
equation (7) to the corresponding system of linear equations by the operational
approach of the Tau method, it is necessary the functions K(x, t, y, z) and f(x, t)
to be polynomials, otherwise, we should approximate these functions by polyno-
mials of suitable degree.
Now let us consider the approximate solution of equation (7) of the form

uN (x, t) =
N∑
i=0

N∑
j=0

Cijx
itj = XTCT (8)

which is a partial sum of the series solution

u(x, t) =
∞∑
i=0

∞∑
j=0

Cijx
itj = XTCT (9)

of equation (7), where X = (1, x, x2, ..., xN , ...)T , T = (1, t, t2, ..., tN , ...)T and
X = (1, x, x2, ..., xN )T , T = (1, t, t2, ..., tN )T and

C =



C00 C01 · · · C0N · · ·
C10 C11 · · · C1N · · ·
...

...
...

... · · ·
CN0 CN1 · · · CNN · · ·
...

...
...

...
. . .


and C is a matrix including first N + 1 rows and columns of C.
Now we state the following fundamental theorem of [25].

Theorem 3.1.
(a) Let K1(x, t, y, z) =

∑N
i=0

∑N
j=0

∑N
m=0

∑N
n=0 k

(1)
ijmnx

itjymzn, then∫ t

c

∫ x

a

K1(x, t, y, z)u(y, z)dydz = XTΠ1T (10)

where

Π1 =
N∑
i=0

N∑
j=0

N∑
m=0

N∑
n=0

k
(1)
ijmnP

(1)
ijmn (11)
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with

P
(1)
ijmn =

[
(µmιµi)T − ei+1ξ

(m)T (a)
]
C
[
µnιµj − ξ(n)(c)eTj+1

]
(12)

and

ξ(m)(x) = µmιX, ξ(n)(x) = µnιX.

(b) If K2(x, t, z) =
∑N

i=0

∑N
j=0

∑N
n=0 k

(2)
ijnx

itjzn, then∫ t

c

K2(x, t, z)u(x, z)dz = XTΠ2T (13)

where

Π2 =
N∑
i=0

N∑
j=0

N∑
n=0

k
(2)
ijnP

(2)
ijn (14)

with

P
(2)
ijn = (µi)TC

[
µnιµj − ξ(n)(c)eTj+1

]
. (15)

(c) For K3(x, t, y) =
∑N

i=0

∑N
j=0

∑N
m=0 k

(3)
ijmxitjym,, we have∫ x

a

K3(x, t, y)u(y, t)dy = XTΠ3T (16)

where

Π3 =

N∑
i=0

N∑
j=0

N∑
m=0

k
(3)
ijmP

(3)
ijm (17)

with

P
(3)
ijm =

[
(µmιµi)T − ei+1ξ

(m)T (a)
]
Cµj . (18)

Proof. See [25]. �

Lemma 3.2. The entries of ξ(m)(x) =
(
ξ
(m)
1 (x), ..., ξ

(m)
N+1(x)

)
are computed as

follows :

ξ
(m)
k (x) =

{
xk+m

k+m , k = 1, 2, ..., N −m

0, otherwise.
(19)

A similar result can be obtained for ξ(n)(x) by replacing m by n.

Proof. See [25]. �

By the following theorem we determine structure of the matrices P
(1)
ijmn, P

(2)
ijn

and P
(3)
ijm which help us to obtain the matrices Π1,Π2 and Π3.



468 A. Tari and S. Shahmorad

Theorem 3.3.
(a) The matrix P

(1)
ijmn in theorem 3.1(a) has the following structure :

0 · · · 0 0 0 · · · 0 0 · · · 0
.
..

.

..
.
..

.

..
.
..

.

..
.
..

0 · · · 0 0 0 · · · 0 0 · · · 0

0 · · · 0 pi+1,j+1 0 · · · 0 pi+1,n+j+2 · · · pi+1,N+1

0 · · · 0 0 0 · · · 0 0 · · · 0
..
.

..

.
..
.

..

.
..
.

..

.
..
.

0 · · · 0 0 0 · · · 0 0 · · · 0

0 · · · 0 pm+i+2,j+1 0 · · · 0 pm+i+2,n+j+2 · · · pm+i+2,N+1

..

.
..
.

..

.
..
.

..

.
..
.

..

.
0 · · · 0 pN+1,j+1 0 · · · 0 pN+1,n+j+2 · · · pN+1,N+1


where the nonzero entries are computed by the following formulas

pi+1,j+1 =
N−n∑
r=1

N−m∑
k=1

(
cr+n

r + n
)(

ak+m

k +m
)Ck−1,r−1.

pi+1,(n+j+1)+r = − 1

r + n

N−m∑
k=1

ak+m

k +m
Ck−1,r−1, r = 1, 2, · · · , N−n−j.

p(m+i+1)+k,j+1 = − 1

k +m

N−n∑
r=1

cr+n

r + n
Ck−1,r−1, k = 1, 2, · · · , N−m−i.

p(m+i+1)+k,(n+j+1)+r =
1

(k +m)(r + n)
Ck−1,r−1, k = 1, · · · , N−m−i,

r = 1, · · · , N − n− j.

(b) The form of matrix P
(2)
ijn in theorem 3.1(b) is :

0 · · · 0 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 · · · 0

0 · · · 0 pi+1,j+1 0 · · · 0 pi+1,n+j+2 · · · pi+1,N+1

0 · · · 0 pi+2,j+1 0 · · · 0 pi+2,n+j+2 · · · pi+2,N+1

...
...

...
...

...
...

...
0 · · · 0 pN+1,j+1 0 · · · 0 pN+1,n+j+2 · · · pN+1,N+1


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where the nonzero entries are computed by the formulas

pi+r,j+1 = −
N−n∑
k=1

ck+n

k + n
Cr−1,k−1, r = 1, 2, · · · , N−i+1,

pi+r,(n+j+1)+k =
1

k + n
Cr−1,k−1, r = 1, 2, · · · , N−i+1,

k = 1, · · · , N − n− j.

(c) The structure of the matrix P
(3)
ijm in theorem 3.1(c) is :

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

0 · · · 0 pi+1,j+1 pi+1,j+2 · · · pi+1,N+1

0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0

0 · · · 0 pm+i+2,j+1 pm+i+2,j+2 · · · pm+i+2,N+1

...
...

...
...

...
0 · · · 0 pN+1,j+1 pN+1,j+2 · · · pN+1,N+1


where the nonzero entries are computed by the formulas

pi+1,j+k = −
N−m∑
r=1

ar+m

r +m
Cr−1,k−1, k = 1, 2, · · · , N−j+1,

p(m+i+1)+r,j+k =
1

r +m
Cr−1,k−1, r = 1, 2, · · · , N −m− i,

k = 1, 2, · · · , N − j + 1.

Proof. See [25]. �

Now by using theorem 3.1, we convert the equation (7) to a linear system of
algebraic equations. To this end, note that our assumption on the functions let
us to write the function F (x, t) of the form :

F (x, t) =
N∑
i=0

N∑
j=0

Fijx
itj = XTFT (20)



470 A. Tari and S. Shahmorad

where F = [Fij ] is an (N + 1)× (N + 1) matrix.
Consequently substituting from relations (8), (10), (13), (16) and (20) in equa-
tion (7) leads to the equation

XTCT −XTΠ1T −XTΠ2T −XTΠ3T = XTFT

or equivalently to the matrix equation

C −Π1 −Π2 −Π3 = F (21)

since X and T are the basis vectors.
Equation (21) is the matrix representation of equation (7) and it is solved for
the unknown coefficients Cij . Therefore the approximate solution uN (x, t) of
equation (7) is obtained in the form (8), and so the approximate solution of
equation (1 is obtained as

vN (x, t) = H−1(uN (x, t))

Definition 3.1. The polynomial uN (x, t) = XTCT is called a Tau method
approximate solution of equation (7), if the matrix C is the solution of the
system (21).

Remark 3.1. From the above definition and structure of the Tau method, it is
clear that if the solution u(x, t) of equation (7) is a polynomial of degree (n1, n2),
then any Tau method approximate solution of degree (N1, N2) with N1 ≥ n1

and N1 ≥ n1 will be exact ( see [17] ).

4. Error bound and convergence

In this section, we obtain an error bound for the approximate solution. We
also prove convergence of the presented method. To this end, we define the error
function

eu(x, t) = u(x, t)− uN (x, t) (22)

where u(x, t) and uN (x, t) are the exact and approximate solutions of equation
(7).

Theorem 4.1. The error function eu(x, t) in (22) has a bound of the form

|eu(x, t)| = |u(x, t)− uN (x, t)| ≤ M1|x|N+1 +M2|t|N+1

(N + 1)!
(23)

where uN (x, t) is approximation of u(x, t) as introduced in (8) and M1 and M2

are nonnegative constants such that∣∣∣∣∂N+1u(x, t)

∂xN+1

∣∣∣∣ ≤ M1,

∣∣∣∣∂N+1u(x, t)

∂tN+1

∣∣∣∣ ≤ M2 (24)

Proof. Writing the bivariate Taylor expansion of u(x, t) around (0, 0) we have

u(x, t) =
N∑

k=0

(
x
∂

∂x
+ t

∂

∂t

)k

u(0, 0) +
1

(N + 1)!

(
x
∂

∂x
+ t

∂

∂t

)N+1

u(ξ1, ξ2)
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where ξ1 ∈ (0, x) and ξ2 ∈ (0, t). Since the function uN (x, t) in (8) include all
terms with degree less than N + 1, we have

u(x, t)− uN (x, t) ≈ 1

(N + 1)!

[(
∂N+1

∂xN+1
u(ξ1, ξ2)

)
xN+1

+

(
∂N+1

∂tN+1
u(ξ1, ξ2)

)
tN+1

]
then using (24) completes the proof. �

Corollary 4.2. By the conditions of theorem 4.1, we have

lim
n→∞

un(x, t) = u(x, t)

Corollary 4.3. Note that the error bound (23) confirm the remark 3.1, since
the conditions of this remark imply M1 = 0 and M2 = 0.

Theorem 4.4. According to the conditions of the theorem 4.1, if the function
H has continuous inverse, then we have

lim
n→∞

vn(x, t) = v(x, t)

Proof. Since u(x, t) = H(v(x, t)) and H−1 is continuous, we have

lim
n→∞

vn(x, t) = lim
n→∞

H−1(un(x, t)) = H−1(u(x, t)) = v(x, t)

This shows that the presented method is convergent. �

5. Numerical Results

In this section, we give some examples to demonstrate accuracy and efficiency
of the presented method. Notice that all non-polynomial terms in these examples
approximated by the Taylor polynomial of degree N and all computations have
been done by programming in Maple.

Example 1 (See [5], example 2).∫ t

0

∫ x

0

v2(y, z)dydz =
1

45
xt(9x4 + 10x2t2 + 9t4), (x, t) ∈ [0, 1]× [0, 1]. (25)

The exact solution is v(x, t) = x2 + t2. To solve this equation, we substitute
u(x, t) = v2(x, t) to obtain the linear equation∫ t

0

∫ x

0

u(y, z)dydz =
1

45
xt(9x4 + 10x2t2 + 9t4), (x, t) ∈ [0, 1]× [0, 1], (26)

then we transformed this equation to the equation of second kind similar to (7)
and we apply the Tau method on it and obtained the solution u(x, t) = (x2+t2)2

for (26) which implies the solution v(x, t) = x2 + t2 for the equation (25) and it
is the exact solution. This confirm the remark 3.1. To compare the result, we
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report the result of [5] in Table 1.

Table 1 : Results of [5] for the example.1

(x, t) = 2−l m = 16 m = 32 m = 64

l = 1 0.6300e− 1 0.3100e− 1 0.1600e− 1
l = 2 0.3200e− 1 0.1600e− 1 0.7800e− 2
l = 3 0.1600e− 1 0.8000e− 2 0.3900e− 2
l = 4 0.8500e− 2 0.4100e− 2 0.2000e− 2
l = 5 0.2500e− 3 0.2100e− 2 0.1000e− 2
l = 6 0.1200e− 2 0.6400e− 4 0.5300e− 4

Note that applying the Tau method directly to equation (26) leads to a linear
system of algebraic equations that its coefficients matrix is singular.

Example 2 (See [5], example 3).∫ t

0

∫ x

0

ex+tv3(y, z)dydz = f(x, t), (x, t) ∈ [0, 1]× [0, 1] (27)

where f(x, t) is selected in such a way that v(x, t) = ex+2t to be the exact
solution. Solving this example is similar to the previous example. We substitute
u(x, t) = v3(x, t) to get a linear equation , then we approximated K1(x, t, y, z),
K2(x, t, z), K3(x, t, y) and F (x, t) by polynomials of degree N by using truncated
Taylor series around the point (x0, t0, y0, z0) = (0, 0, 0, 0) and finally we apply
the method to obtain the results of Tables 2 for N = 14, N = 16 and N = 18
which is represented for the absolute errors |ev(x, t)| = |v(x, t) − vN (x, t)| at
some selected points of [0, 1]× [0, 1].

Table 2 : Absolute errors of example 2

(x, t) N = 14 N = 16 N = 18

( 1
16 ,

1
16 ) 0.3000e− 18 0.2000e− 18 0.1000e− 18

( 18 ,
1
8 ) 0.2456e− 14 0.5200e− 17 0.2000e− 18

( 14 ,
1
4 ) 0.5815e− 10 0.4756e− 12 0.3101e− 14

( 12 ,
1
2 ) 0.1001e− 5 0.3234e− 7 0.8348e− 9

(0.75, 0.5) 0.1320e− 5 0.4215e− 7 0.1081e− 8
(1, 0.75) 0.3018e− 3 0.2149e− 4 0.1230e− 5
(1, 1) 0.9384e− 2 0.1171e− 2 0.1178e− 3

For comparing the results of table 2, we report the result of [5] in Table 3.
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Table 3 : Results of [5] for example.2

(x, t) = 2−l m = 16 m = 32 m = 64

l = 1 0.4200 0.2100 0.1000
l = 2 0.1900 0.9300e− 1 0.4600e− 1
l = 3 0.1200 0.6000e− 1 0.2900e− 1
l = 4 0.1400 0.4700e− 1 0.2300e− 1
l = 5 0.2400e− 1 0.6300e− 1 0.2000e− 1
l = 6 0.2600e− 1 0.1200e− 1 0.3100e− 1

Similar to example.1 using the Tau method directly to linear form of equation
(27) leads to a singular linear system of algebraic equations.

Example 3 (Constructed). The equation∫ t

0

∫ x

0

cos(y − z)ev(y,z)dydz = f(x, t), x, t ∈ [0, 2] (28)

with

f(x, t) = 2 +
1

4
(x+ t)− 2(cosx+ cost)− 1

4
(xcos2t+ tcos2x) + 2cos(x− t)

has the exact solution as v(x, t) = ln(sin(x + t) + 2). We proceed as before
by setting u(x, t) = ev(x,t) and obtain the results of Table 4 for |ev(x, t)| =
|v(x, t)− vN (x, t)|.

Table 4 : Results of example.3 by the Tau method

(x, t) N = 10 N = 12 N = 13

(0.5, 0.5) 0.7372e− 11 0.1186e− 13 0.2505e− 15
(1, 0.5) 0.6958e− 8 0.4497e− 10 0.2050e− 11
(1, 1) 0.8045e− 8 0.5276e− 10 0.6891e− 11
(1.5, 1.5) 0.1082e− 6 0.1048e− 8 0.3113e− 8
(2, 1) 0.9328e− 5 0.2531e− 6 0.7888e− 7
(2, 2) 0.4572e− 4 0.1135e− 5 0.2539e− 6

The system obtained of using the Tau method directly to linear form of equation
(28), also is singular.

Example 4 (Constructed). Consider the equation∫ t

0

∫ x

0

e2y−z 1

v(y, z)
dydz = f(x, t), x, tϵ[0, 2] (29)
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where f(x, t) is selected in such a way that v(x, t) = 1
x2+t2+1 to be the exact

solution.
By setting u(x, t) = 1

v(y,z) we obtain the linear equation∫ t

0

∫ x

0

e2y−zu(y, z)dydz = f(x, t), x, tϵ[0, 2] (30)

and applying the proceed gives u(x, t) = x2 + t2 + 1 and v(x, t) = 1
x2+t2+1

which is the exact of equation (29). But using the Tau method directly to linear
equation (30) leads to an inconsistent system.

6. Conclusion

In this paper, we designed a simple high accurate method for solving nonlinear
two-dimensional Volterra integral equations of the first kind by using a simple
transform. As the examples show, the presented method has high accuracy. Also,
it will be possible to investigate the numerical solution of the two dimensional
Fredholm integral equations of the first kind.
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