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TWO-LAYER MUTI-PARAMETERIZED SCHWARZ

ALTERNATING METHOD FOR TWO-DIMENSIONAL

PROBLEMS†

SANG-BAE KIM

Abstract. The convergence rate of a numerical procedure based on Sch-
warz Alternating Method(SAM) for solving elliptic boundary value prob-
lems depends on the selection of the interface conditions applied on the
interior boundaries of the overlapping subdomains. It has been observed

that the mixed interface condition, controlled by a parameter, can opti-
mize SAM’s convergence rate. In [8], one introduced the two-layer multi-
parameterized SAM and determined the optimal values of the multi-parame-

ters to produce the best convergence rate for one-dimensional elliptic bound-
ary value problems. In this paper, we present a method which utilizes the
one-dimensional result to get the optimal convergence rate for the two-
dimensional problem.
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1. Introduction

Schwarz-type alternating methods have become some of the most important
approaches in domain decomposition techniques for solution of the boundary
value problems (BVP’s). These methods are based on a decomposition of the
BVP domain into overlapping subdomains. The original BVP is reduced to a
set of smaller BVP’s on a number of subdomains with appropriate interface
conditions on the interior boundaries of the overlapping areas, whose solutions
are coupled through some iterative scheme to produce an approximation of the
solution of the original BVP. It is known [1], [6] that under certain conditions
the sequence of the solutions of the subproblems converges to the solution of the
original problem.
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One of the objectives of this research is to study a class of Schwarz alternating
methods (SAM’s) whose interface conditions are parameterized and estimate the
values of the parameters involved that speed up the convergence of these methods
for a class of BVP’s. In the context of elliptic BVP’s the most commonly used
interface conditions are of Dirichlet type. For this class of numerical SAM, there
are several studies about the convergence, which include [11], [13], [16], [17], [14],
[2], [12], [19]. The effect of parameterized mixed interface conditions has been
considered by a number of researchers [3], [15], [5], [20]. Among them, Tang
proposed a generalized Schwarz splitting [20]. The main part of his approach to
the solution of a BVP is to use the mixed boundary condition, known as Robin
condition,

Bi(u) = ωiu+ (1− ωi)
∂u

∂n
(1)

on the artificial boundaries. They adopted one same parameter ω for each i-
th boundary. In [5], a multi-parameter SAM is formulated in which the mixed
boundary conditions are controlled by a distinct parameter ωi for the i-th over-
lapping area. Fourier analysis is applied to determine the values of ωi parameters
that make the convergence factor of SAM be zero.

In [7], one formulated a multi-parameter SAM at the matrix level where
the parameters αi are used to impose mixed interface conditions. The relation
between the parameters αi and ωi is given by

αi =
1− ωi

1− ωi + ωih
(2)

(Refer to [7]), where h is the grid size. One determined analytically the optimal
values of αi’s for one-dimensional(1-dim) boundary value problems, which mini-
mize the spectral radius of the block Jacobi iteration matrix associated with the
SAM matrix.

In [18], they proposed the over-determined interface condition for 1-dim prob-
lem which adopted two-layer interface with one global parameter α. In [8],
two-layer multi-parameterized SAM was presented where the multi-parameter
αi’s were used. In [9], one introduced a new scheme of the double-indexed
multi-parameterized SAM for two-dimensional(2-dim) problems, where one used
double-indexed multi-parameter αj,i for each j-th grid point of the i-th interfaces
of the subdomains to get the best convergence for 2-dim BVP’s.

In this paper, we applied the double-indexed multi-parameter αj,i scheme for
the two-layer multi-parameterized SAM for 2-dim BVP’s.

In the following section, we summarize the result of the two-layer multi-
parameterized SAM on 1-dim problem, which has been presented in [8]. In
section 3, we formulate the two-layer multi-parameterized SAM on 2-dim prob-
lem where we impose distinct parameters on each grid point on the interfaces of
the subdomains. We show that the 2-dim case can be reduced to the 1-dim ones
and obtain the optimal values of the two-layer multi-parameters which minimize
the spectral radius of the block Jacobi iteration matrix associated with the SAM
matrix of 2-dim problem.
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Figure 1. An example of the k-way decomposition of the do-
main of 1-dim boundary value problem (3).

2. Two-Layer Multi-Parameterized SAM for 1-dim problem

We consider the two-point boundary value problem:

−u′′(t) + q u(t) = f(t), t ∈ (0, 1)

u(0) = a0, u(1) = a1, (3)

with q ≥ 0 being a constant. We will formulate a numerical instance of SAM
based on a k-way decomposition ( i.e. the number of subdomains is k ) of the
problem domain. An example of k-way decomposition is depicted in Figure 1.

Let Tj(x, y, z) be a j ×j tridiagonal matrix such that

Tj(x, y, z) =


x -1 0 · · · 0
-1 y -1 · · · 0
.
..

. . .
. . .

. . .
.
..

0 · · · -1 y -1

0 · · · 0 -1 z

 (4)

and let

Tj(x) ≡ Tj(x, x, x). (5)

If we discretize the problem (3) by a second order central divided difference
discretization scheme with a uniform grid of mesh size h = 1

n+1 , we obtain a
linear system

Ax = f (6)

where A = Tn(β) with β = 2 + qh2.
If we consider 3-way (k = 3) decomposition, then Ax = f has three overlap-

ping diagonal blocks as follows.
Tm-l -F 0 0 0
-E Tl -F 0 0

0 -E Tm-2l -F 0
0 0 -E Tl -F
0 0 0 -E Tm-l



x1

x2

x3

x4

x5

 =


f1
f2
f3
f4
f5

 (7)

where Tj = Tj(β, β, β) in (4) and m and l are the numbers of nodes in each
subdomain and the overlapping regions, respectively, such that l < m−1

2 . In (7),
the matrix E have zero elements everywhere except for a 1 at the rightmost top
position and the matrix F have zero elements everywhere except for a 1 at the
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leftmost bottom position. So the matrices E and F have compatible sizes with
the following forms.

E =


0 · · · 0 1
0 · · · 0 0
..
.

..

.
..
.

0 · · · 0 0

, F =


0 0 · · · 0
.
..

.

..
.
..

0 0 · · · 0
1 0 · · · 0

 (8)

The numerical version of SAM [19] for the problem (3) is equivalent to a
block Gauss-Seidel iteration procedure for a new linear system, called Schwarz
Enhanced Matrix Equation ,

Ãx̃ = f̃ (9)

where

Ã = Ã(β) =



Tm-l -F 0 0 0 0 0
-E Tl 0 -F 0 0 0
-E 0 Tl -F 0 0 0

0 0 -E Tm-2l -F 0 0
0 0 0 -E Tl 0 -F
0 0 0 -E 0 Tl -F
0 0 0 0 0 -E Tm-l


, x̃ =



x1

x2

x′
2

x3

x4

x′
4

x5


, f̃ =



f1
f2
f2
f3
f4
f4
f5


. (10)

Ã(β) means that Ã is a function of β. Note that the solution x of (6) is obtained
from the solution x̃ of (9), vice versa. In [20], it is shown that a good choice of
the splitting of Tl’s can significantly improve the convergence of SAM. Applying
for some splittings of Tl’s into Ã in (10), we have a new equation

A′x̃ = f̃ (11)

with

A′ =



Tm-l -F 0 0 0 0 0
-E B1 C1 -F 0 0 0
-E C1

′ B1
′ -F 0 0 0

0 0 -E Tm-2l -F 0 0

0 0 0 -E B2 C2 -F
0 0 0 -E C2

′ B2
′ -F

0 0 0 0 0 -E Tm-l


(12)

where Bi, Ci
′, i = 1, 2 are some matrices such that (Bi − Ci

′) is non-singular
and

Tl = Bi + Ci = Bi
′ + Ci

′, i = 1, 2. (13)

Note that two linear system (9) and (11) are equivalent in the sense that they
have the same solutions. If Ci

′ and Ci are chosen such that they are the l × l
matrices with all zero entries except for an αi in the positions (1, 1) and (l, l),
respectively, as follows,

Ci
′ =


1-αi 0 · · · 0
0 0 · · · 0
..
.

..

.
..
.

0 0 · · · 0

, Ci =


0 · · · 0 0
.
..

.

..
.
..

0 · · · 0 0
0 · · · 0 1-αi

 , (14)
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the resulting matrix A′ is given as follows

A′ = A′(β, α1, α2) =


Tm(β, β, β′

1) -F1
′ 0

-E1
′ Tm(β′

1, β, β
′
2) -F2

′

0 -E2
′ Tm(β′

2, β, β)

 (15)

where Tm(x, y, z)’s are m×m matrices defined in (4) and β′
i = β-(1-αi) and Ei

′

is the m×m matrix with zero elements everywhere except that

(1,m-l )-th entry = 1
(1,m-l+1)-th entry = -(1-αi)

and Fi
′ is the m×m matrices with zero elements everywhere except that

(m, l )-th entry = -(1-αi)
(m, l+1)-th entry = 1.

So far, A′ is corresponding to the one-layer multi-parameterized SAM. Now we
add one more layer to get two-layer multi-parameterized SAM (Refer to the
over-determined SAM in [18]) as follows.

A′′ = A′′(β, α1, α2) =

 Tm(β, β, β′′
1 ) -F1

′′ 0
-E1

′′ Tm(β′′
1 , β, β

′′
2 ) -F2

′′

0 -E2
′′ Tm(β′′

2 , β, β)

 (16)

where β′′
i = β-(1-αi)-

αi

β and the matrix E′′
i is the m × m matrix with zero

elements everywhere except that

(1,m-l-1)-th entry = αi

β

(1,m-l )-th entry = (1-αi)
(1,m-l+1)-th entry = -(1-αi)

and the matrix F ′′
i is the m ×m matrix with zero elements everywhere except

that
(m, l )-th entry = -(1-αi)
(m, l+1)-th entry = (1-αi)
(m, l+2)-th entry = αi

β .

If the number of subdomains k is more than 3, the matrix A′′ is a block k×k
matrix of the form

A′′ = A′′(β,a) =


G1 -F1

′′ 0 0 · · · 0
-E1

′′ G2 -F2
′′ 0 · · · 0

..

.
. . .

. . .
. . .

..

.
0 · · · 0 -E′′

k-2 Gk-1 -F ′′
k-1

0 · · · 0 0 -E′′
k-1 Gk

 (17)

where a = (α0, α1, α2, · · · , αk) with α0 = αk = β
β−1 and Gi’s are defined as

Gi = Tm(βi-1, β, βi), (18)
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with βi = β-(1-αi) -
αi

β for i = 1, 2, · · · , k. We call the matrix A′′ as Two-layer

Multi-Parameterized Enhanced Matrix. If we define

M=M(β,a)=


G1 0 · · · 0
0 G2 · · · 0
..
.

. . .
..
.

0 · · · 0 Gk



N=N(β,a) =


0 F1

′′ 0 0 · · · 0
E1

′′ 0 F2
′′ 0 · · · 0

..

.
. . .

. . .
. . .

..

.
0 · · · 0 Ek-2

′′ 0 Fk-1
′′

0 · · · 0 0 Ek-1
′′ 0



(19)

with a=(α0, α1, α2, · · · , αk), then we can write the two-layer multi-parameterized
enhanced matrix A′′ as

A′′ = M −N (20)

which is called a Two-lyaer Multi-Parameterized Schwarz Splitting (2MPSS) .
The convergence behavior of 2MPSS depends on the spectral radius of the

following block Jacobi matrix

J = M -1N =



0 G1
-1F1

′ 0 0 · · · 0
G2
-1E1

′′ 0 G2
-1F2

′′ 0 · · · 0
0 G3

-1E2
′′ 0 G3

-1F3
′′ · · · 0

..

.
. . .

. . .
. . .

..

.
0 · · · 0 Gk-1

-1Ek-2
′′ 0 Gk-1

-1Fk-1
′′

0 · · · 0 0 Gk
-1Ek-1

′′ 0


. (21)

Note that J is a function of the parameters αi’s, which correspond to the pa-
rameters ωi’s in the mixed interface condition (1), respectively. The convergence
rate of SAM can be optimized by controlling these parameters αi’s. In [8], one
determined the optimal values of the multi-parameter αi’s that make the spec-
tral radius of the block Jacobi matrix J in (21) to be zero. The result of [8] is
presented in the following theorem.

Theorem 1. Let θ = cosh-1(β2 ) with β = 2 + qh2 and let p ∈ {1, 2, · · · , k − 1}
and let

Θ(x) =

{
sinh(x θ) , for θ > 0
x , for θ = 0

F1(α) = Θ(m-l − 1)− (α/β + 1-α)Θ(m-l-2)
F2(α) = Θ(m-l )− (α/β + 1-α)Θ(m-l-1)
F3(α) = Θ(m-l + 1)− (α/β + 1-α)Θ(m-l ).
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If the values αi, i = 0, 1, · · · , k, be given by

α0 = β
β−1

αi =
−F2(αi-1) + F3(αi-1)

F1(αi-1)/β − F2(αi-1) + F3(αi-1)
, i = 1, 2, · · · , p

αi =
−F2(αi+1) + F3(αi+1)

F1(αi+1)/β − F2(αi+1) + F3(αi+1)
, i = p+ 1, · · · , k − 1

αk = β
β−1

then the block Jacobi matrix J in (21) is zero, too.

3. Two-Layer Multi-Parameterized SAM for 2-dim Problem

Consider the 2-dim boundary value problem

−∇2u(x, y) + q u(x, y) = f(x, y), (x, y) ∈ Ω,
u(x, y) = g(x, y), (x, y) ∈ Γ

(22)

where Γ is the boundary of Ω ≡ (0, 1) × (0, 1) and q ≥ 0 is a constant. We
formulate a SAM based on a k-way splitting of the domain Ω, i.e., we decompose
our domain into k overlapping subdomains Ωi along the x-axis and make a strip-
type decomposition of the rectangular domain Ω (for instance, see Figure 2).
Next we apply the interface conditions on the two interior boundaries between
subdomains Ωi and Ωi+1. Let ℓ be the length of the overlap in x-direction and
η be the length of each subdomain in the same direction. Figure 2 depicts such
a 3-way splitting of the unit square Ω.

To begin our analysis we use a 5-point finite difference discretization scheme
with uniform grid of mesh size h = 1

n+1 on both x- and y-axes and discretize

the BVP in (22) to obtain a linear system of the form

Bx = f. (23)

The natural ordering of the nodes is adopted starting from the origin and going in
the y-direction first so that the resulting matrix A can be partitioned into block
matrices corresponding to the subdomains, respectively. Using tensor product
notation ⊗ (See [4], and [10] in which tensor products in connection with BVP’s
were introduced.), the matrix B in (23) can be written as

B = Tn(β)⊗ In + In ⊗ Tn(2) (24)

where Tj(x) is defined in (5) and β = 2 + qh2.

Define l+1 = ℓ
h and m+1 = η

h such that n = mk−l(k−1) and l < m−1
2 . The

numerical version of SAM for the problem (22) is equivalent to a block Gauss-
Seidel iteration procedure for a new linear system, called the Schwarz Enhanced
Matrix Equation ,

B̃x̃ = f̃ (25)

with
B̃ = Ã(β)⊗ In + Ikm ⊗ Tn(2) (26)
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Figure 2. A 3-way splitting of the unit square Ω.

where Ikm is the km×km identity matrix and Ã(β) is the k×k block matrix as
that defined in (10), which is the case of k = 3. Note that each diagonal block

in Ã(β) is m×m matrix. .
Let Xn be the n × n orthogonal matrix whose columns are the eigenvectors

of the matrix Tn(2). Since the eigenvalues of the matrix Tn(2) are known to be
γi = 2 + 2 cos( iπ

n+1 ), i = 1, 2, · · · , n, we can write

XT
n Tn(2) Xn = Dn ≡ diag(γ1, γ2, · · · , γn). (27)

Let X = Ikm ⊗Xn, then its inverse is given by X-1 = Ikm ⊗XT
n , so we have

X-1B̃X = (Ikm ⊗XT
n )(Ã(β)⊗ In)(Ikm ⊗Xn)

+(Ikm ⊗XT
n )(Ikm ⊗ Tn(2))(Ikm ⊗Xn)

= (Ikm Ã(β) Ikm)⊗ (XT
n In Xn) + Ikm ⊗ (XT

n Tn(2)Xn)

= Ã(β)⊗ In + Ikm ⊗Dn.

If P is the permutation matrix that maps

row (i− 1)n+ j into row (j − 1)km+ i

for i = 1, 2, · · · , km and for j = 1, 2, · · · , n, then we have

B̂ ≡ P -1X-1B̃XP = P -1(Ã(β)⊗ In)P + P -1(Ikm ⊗Dn)P

= In ⊗ Ã(β) +Dn ⊗ Ikm
= diag(Ã(β + γ1), Ã(β + γ2), · · · , Ã(β + γn))

= diag(Ã(ζ1), Ã(ζ2), · · · , Ã(ζn))

(28)

where

ζj = β + γj , j = 1, 2, · · · , n. (29)

Note that the solution x̃ of linear system (25) is obtained by x̃ = XP x̂ if we
solve the linear system

B̂x̂ = f̂ (30)

where f̂ = P -1X-1f̃ with f̃ in (25).
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From (28) and (30), we know that the 2-dim problem (25) is reduced to n
number of 1-dim problems

Ã(ζj) = f̂j , j = 1, 2, · · · , n,

where f̂j is the corresponding sub-vector of f̂ . Based on (28), the Two-layer

Multi-Parameterized Schwarz Enhanced Matrix for B̂ in (28) is defined as

B′′ = diag( A′′(ζ1,a), A
′′(ζ2,a), · · · , A′′(ζn,a) ) (31)

where A′′(x,a) is defined in (17). If we let

M = diag( M(ζ1,a),M(ζ2,a), · · · ,M(ζn,a) )
N = diag( N(ζ1,a), N(ζ2,a), · · · , N(ζn,a) )

(32)

where M(x,a) and N(x,a) are defined in (19), then we can write the two-layer
multi-parameterized enhanced matrix B′′ in (31) as

B′′ = M −N (33)

which is called a Two-layer Multi-Parameterized Schwarz Splitting (2MPSS) .
The convergence behavior of 2MPSS depends on the spectral radius of the fol-
lowing block Jacobi matrix

J = M -1N = diag( L1(a), L2(a), · · · , Ln(a) ) (34)

where

Lj(a) = M(ζj ,a)
-1N(ζj ,a), j = 1, 2, · · · , n.

In [8], one failed to determine a parameter vector a such that the spectral
radius of the block Jacobi matrix J in (34) is zero because it is not possible to
find such a parameter vector a that makes all of the spectral radii of the diagonal
blocks Lj(a)’s in (34) zero simultaneously.

Now we adopt distinct parameter vector aj for each diagonal block as follows

J = M -1N = diag( L1(a1), L2(a2), · · · , Ln(an) ) (35)

where

aj = (αj,0, αj,1, αj,2, · · · , αj,k), j = 1, 2, · · · , n.
Note these 2-dim indices (j, i) in multi-parameter αj,i are related to the idea
that one adopts variable parameter ωi(x, y) instead of constant parameter ωi in
(1) along the i-th interface, i.e., we have

Bi(u) = ωi(x, y)u+ (1− ωi(x, y))
∂u

∂n
(36)

as the mixed interface condition on the i-th interface boundary.
Now, using these double-indexed multi-parameter αj,i’s, we have the following

theorem for double-indexed multi-parameterized Schwarz splitting B′′ = M −N
in (33).
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Theorem 2. For j = 1, 2, · · · , n, let θj = cosh-1(
ζj
2 ) with ζj in (29) and let

p ∈ {1, 2, · · · , k − 1} and let

Θj(x) =

{
sinh(x θj) , for θj > 0
x , for θj = 0

F1(j, α) = Θj(m-l − 1)− (α/ζj + 1-α)Θj(m-l-2)
F2(j, α) = Θj(m-l )− (α/ζj + 1-α)Θj(m-l-1)
F3(j, α) = Θj(m-l + 1)− (α/ζj + 1-α)Θj(m-l ).

If the values αj,i, j = 1, 2, · · · , n, i = 0, 1, · · · , k are given by

αj,0 =
ζj

ζj−1

αj,i =
−F2(j, αj,i-1) + F3(j, αj,i-1)

F1(j, αj,i-1)/ζj − F2(j, αj,i-1) + F3(j, αj,i-1)
, i = 1, 2, · · · , p

αj,i =
−F2(j, αj,i+1) + F3(j, αj,i+1)

F1(j, αj,i+1)/ζj − F2(j, αj,i+1) + F3(j, αj,i+1)
, i = p+ 1, · · · , k − 1

αj,k =
ζj

ζj−1

then the spectral radius of the block Jacobi matrix J in (35) is zero.

4. Numerical Experiments

In this section, we present a numerical experiment to prove the result of the
previous section. we will compare the results of Two-layer Multi-Parameterized
SAM (2MPSAM) with those of One-layer Multi-Parameterized SAM (1MP-
SAM) [9]. Consider the following model problem

−∇2u(x, y) + q u(x, y) = f(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1),
u(x, y) = g(x, y), (x, y) ∈ Γ,

(37)

where q ≥ 0 and Γ is the boundary of Ω, with solution

u(x, y) = sin(2πx) cos(2πy).

In all the experiments, the vector with all its components 0.0 was used as
initial guess of the solution vector. The relative residual rp is computed as the
ratio of ℓ2-norms of the residuals of the corresponding system of equations after
p iterations, i.e.,

rp =
||Bx(p) − f ||2
||Bx(0) − f ||2

.

The convergence rate is very sensitive to the computed optimal value of pa-
rameter αj,i’s and the symmetric choice of them (i.e. Take p = [k/2] in Theorem
(2)) reduces the error propagation when we compute the optimal value of pa-
rameters αj,i’s.

Table 1 shows the relative residuals of 1PSAM computed and the maximum
errors after k iterations for k = 3, 4 and 8 subdomains, m = 10 and 20 local grids
and minimum (l = 1) and half (l = [m-1]/2) overlaps. Although the spectral
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Table 1. The 1MPSAM is applied to the BVP (37).

relative residual rk
max(error)

m l k = 3 k = 4 k = 8

10 1 6.9103E-16 1.0715E-15 1.2971E-15
4.2362E-03 2.4712E-03 6.5235E-04

10 4 7.0662E-16 6.8898E-16 1.3027E-15
6.7225E-03 4.2362E-03 1.2710E-03

20 1 1.4107E-15 1.6217E-15 2.1030E-15
1.0259E-03 5.8718E-04 1.5067E-04

20 9 1.1846E-15 1.2108E-15 1.5845E-15
1.9301E-03 1.2246E-03 3.7202E-04

Table 2. The 2MPSAM is applied to the BVP (37).

relative residual rk
max(error)

m l k = 3 k = 4 k = 8

10 1 6.3429E-16 9.9953E-16 1.2436E-15
4.2362E-03 2.4712E-03 6.5235E-04

10 4 6.3026E-16 6.3753E-16 1.2167E-15
6.7225E-03 4.2362E-03 1.2710E-03

20 1 1.3874E-15 1.5482E-15 2.0754E-15
1.0259E-03 5.8718E-04 1.5067E-04

20 9 1.1614E-15 1.1497E-15 1.5502E-15
1.9301E-03 1.2246E-03 3.7202E-04

radius of the linear system is zero, it takes at least k iterations for the boundary
information to reach the whole interior points. We observe that the results of
the half overlapping cases is almost same as those of the minimum overlapping
cases. Table 2 shows the performance of 2MPSAM under the same conditions.
The results of 2PSAM are a little better than those of 1PSAM although they
are not quite different presumably because the spectral radii of both cases are
zero.
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