J. Appl. Math. & Informatics Vol. 30(2012), No. 3 - 4, pp. 489 - 498
Website: http://www.kcam.biz

AN IMPROVED ADDITIVE MODEL FOR RELIABILITY
ANALYSIS OF SOFTWARE WITH MODULAR STRUCTURE'

S. CHATTERJEE*, S. NIGAM, J.B. SINGH AND L.N. UPADHYAYA

ABSTRACT. Most of the software reliability models are based on black box
approach and these models consider the entire software system as a sin-
gle unit. Present day software development process has changed a lot. In
present scenario these models may not give better results. To overcome this
problem an improved additive model has been proposed in this paper, to es-
timate the reliability of software with modular structure. Also the concept
of imperfect debugging has been also considered. A maximum likelihood
estimation technique has been used for estimating the model parameters.
Comparison has been made with an existing model. x? goodness of fit has
been used for model fitting. The proposed model has been validated using
real data.

AMS Mathematics Subject Classification : 65H05, 65F10.
Key words and phrases : Software Reliability, Modular Structure, Faults,
NHPP.

1. Introduction

With the growing use of computers in various critical areas, the demand of
highly reliable software is increasing day by day. To measure the reliability of
a software many software reliability models have been developed depending on
different aspects of software development process like: perfect debugging, imper-
fect debugging, immediate removal of faults, effect of learning process etc [15, 17,
18, 21]. In all these models, software systems have been considered as a single
unit and its behavior with the outside world has been modeled without consid-
ering its internal structure. This approach of modeling is black box based [4]. In
this approach most of the models have been developed based on failure nature
observed during testing phase. Assuming some probability distribution for past

Received April 4, 2011. Revised September 19, 2011. Accepted October 18, 2011.
*Corresponding author. T Author’s acknowledge University Grant Commission (UGC), New Delhi,
India, for financial help under the project number F.No0.33-115/2007(SR) and Indian School of Mines,
Dhanbad, India for providing necessary facilities for this work.

© 2012 Korean SIGCAM and KSCAM.

489

490 S. Chatterjee, S. Nigam, J.B. Singh and L.N. Upadhyaya

failure data, researchers used to model the future failure behavior of the soft-
ware and estimate number of faults remaining in a software, its reliability, etc..
Nowadays with the advancement and wide spread use of object oriented design
techniques the component based software development is increasing. Commer-
cially available of the shelf (COTS) components can be developed in house, or can
be developed contractually. This reflects the fact that, in present days softwares
are developed in more heterogeneous fashion, i.e., it is developed by multiple
team in different environments. Therefore, black-box approach for developing
software reliability models may not produce good results. Thus, predicting re-
liability of the software in its early life cycle, i.e., design phase is very much
essential. This is only possible by using architectural based software reliability
estimation technique.

Architecture of a software represents the manner in which the different com-
ponents, i.e., modules of a software interact. The interaction between the compo-
nents takes place through transition, i.e., through transfer of execution control.
The architecture may also include information about the execution of each com-
ponent. One must model the interaction of all components under architecture
based approach. The failure behavior of each component and their interfaces is
specified in terms of reliability and failure intensities (either constant or time
dependent). One can estimate the reliability of software by superimposing the
failure behavior on architecture based model. The earliest software reliability
model based on component utilization and their reliability has been proposed
by Cheung [2]. Till date many researchers have proposed various architecture
based models [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 19, 20]. Depending on
the method of superimposition of the failure behavior on architecture of a soft-
ware, architecture based software reliability modeling technique can be classified
in three categories [8]: (i) state-based modeling, (ii) path-based modeling, and
(iii) additive models. In this paper, an improved architecture based software
reliability model has been proposed, which falls under category (iii).

In additive models the failure behavior of each components can be modeled
using some stochastic process such as non homogeneous poisson process (NHPP).
Therefore, the system failure process also follows NHPP. Also, in these category
models it has been assumed that, cumulative failures and failure intensity func-
tion of the system is the sum of the corresponding functions of each subsystem.

Xie & Wohlin [20] has proposed an additive model, considering the fact that
failure process of each subsystem follows a log-power model [22]. They have
considered the debugging process as perfect and used linear regression technique
to estimate the model parameters. The main drawback of this model is the
assumption of perfect debugging. Entire software development process is hu-
man dependent. Therefore, while debugging a software one can introduce new
errors in the software. Also, as learning of test personnel increases about a soft-
ware, the failure detection rate increases. This is more realistic situation than
perfect debugging. In this paper, a modified additive model based on NHPP

An Improved Additive Model for Reliability Analysis of Software 491

has been proposed considering imperfect debugging and increasing failure detec-
tion rate. The paper is organized as follows: Section 2 presents the proposed
model. Section 3 presents the results and comparison. Finally conclusion has
been presented in Section 4.

2. Proposed Additive Model

In this section an improved component based additive model has been pro-
posed. Any software is composed of various subsystems. For large software
system it is a common practice to test these subsystems independently. Since
failure of any subsystem will be treated as a software system failure, the soft-
ware system can be considered as a series system. Therefore, a weighted additive
model has been considered here. Based on these assumptions the system failure
intensity As(t) can be modeled as

/\s(t) = Zn:’wl/\l = wl)\l(t) + ’LUQ/\Q(t) 4+ -4 wn/\n(t), (1)

where \;(t) is the failure intensity of each component, i.e., module of a software.
Hence, the expected (mean) number of failures of software system m(t) will
be also an additive one, i.e.,

n
ms(t) = Z wim; = wimy(t) + wama(t) + - + wpman(t), (2)
=1
where w; are weights (i = 1,2,--- ,n) based on the frequency of execution of each

component and m;(¢) is the expected numbers of failures of each component, i.e.,
module of a software. The failure intensity A;(t) and expected number of failures
m;(t) are related by the equation:

d
Smit) = () (3)
Weighted additive model is more logical because frequency of each component
being executed affects over all system reliability [14]. The weights w1, wa, -+, wy,

can be obtained based on the architecture of the software. In architecture based
approach all the paths of a software are considered. Each path consists of some
modules (i.e., components). In a particular path all the modules are related, and
this is due to the interfacing between them. Execution of software for various
inputs means execution of different paths. For each run, the execution path is
specified in terms of the sequence of components. Hence, a software has series
structure. For simplicity it is assumed that components, i.e., modules along
a path functions independently. Therefore, the reliability of each path can be
calculated using the following equation

n
Ry=[[Rii=1,2,-- n, (4)

i=1

492 S. Chatterjee, S. Nigam, J.B. Singh and L.N. Upadhyaya

where R), is the reliability of each path, R; is the reliability of each component,
i.e., module in a path. Reliability R; of each component i can be calculated
using the equation

Rift) = e~ Jin @, (5)

Here it is considered that, each component behaves independently which may
not be true always in reality.

Also, in this paper it has been assumed that failure phenomenon of each
component follows NHPP. Hence, the system failure process defined as the sum
of all failure process will also follow a NHPP, with the mean value function as
the sum of underlying mean value function given in equation (2). NHPP model
in the area of software reliability was first proposed by Goel & Okumoto [3]
and later various NHPP models have been developed considering perfect and
imperfect debugging [18].

Goel-Okumoto assumed that, the counting process N(¢),t > 0 represents the
cumulative number of failures by time ¢ follows NHPP with mean value function
m(t).

Therefore,

e—m(t) [m(t)]”
n!

Prob(N(t) =n) = n=0,1,2,- (6)

According to Goel-Okumoto the failure intensity A; is proportional to re-
maining number of faults. Thus m; can be obtained by solving the differential
equation

At) = — = =bla—mf(t)) (7)
and
m(t) = /O () dt. (8)

where a is the initial number of faults present in the software to be detected
eventually, b is the failure detection rate.

2.1. Assumptions of the Proposed Model. The proposed model is based
on the following assumptions

(i) Failure removal process of a software follows NHPP.

(ii) Software system as well as each component of a software is subject to
failure at random time caused by remaining faults.

(iii) the software debugging process is imperfect . Hence, failure detection
rate b initially decreases and then increases with time as learning increases.

An Improved Additive Model for Reliability Analysis of Software 493

Thus, failure detection rate b;(t) for each component 4, will be a function of time
as follows

bi(t) =b;()*,0< k<1 (9)

where b; and k are constant. Here for the sake of simplicity, the number of errors
eventually detected ‘a’ has been considered as constant.

(iv) The software system failure intensity A, is weighted sum of failure inten-
sity A;(t) of each component i, i.e.,

As(t) = iwi/\i = w1 A1 (t) + waa(t) + - + wpAp (1), (10)
i=1

(v) The expected number of failures m(t)of the software system is also an
weighted sum of expected number of failures m;(t) of each component i, i.e.,

ms(t) = Z w;m; = wlml(t) + IUQ’ITLQ(t) +- wnmn(t)v (11)

Based on the above assumptions the mean value function and failure intensity
for each component of the proposed model is

—bytht1
m;(t) = a;(1 —e *¥1) (12)
and
—bythtl
)\z(t) = aibitkeT (13)

The conditional reliability R;(z|t) for each component can be obtained by solving
the equation

Ry(alt) = e~ Imsltra)=mi(t)] (14)

Though in the proposed model a weighted sum of failure intensity A;(¢) and
expected number of failures m;(t) has been considered, but no data is available on
the frequency of execution of each subsystem. Therefore, in this case the weights
of each component has been considered as one, i.e., w; =1 fori=1,2,--- ,n.

2.2. Parameter Estimation. The parameters of the proposed model have
been estimated using maximum likelihood estimation (MLE) technique given in
[18]. The log likelihood function (LLF) is defined as

LLF = Z(yz —yi-1) logm(t;) —m(ti—1)] — m(tn) (15)

and maximum likelihood equation for estimating the unknown parameter 6 is
given by

n _0 m(t;) — 8‘m ti
> 69imEti§ - fi&ti(l) 1) (Yi —yi—1) — %m(tn) -0 (16)

(3

494 S. Chatterjee, S. Nigam, J.B. Singh and L.N. Upadhyaya

where y; represents failure corresponding to each time ¢;, i = 1,2, --- ,n. Here,
the unknown parameters are the number of failures a; and failure detection rate
b; of each component i. The parameters a; and b; of the proposed model have
been estimated using MLE technique given in equation (15) and (16). MLE
equations derived using equation (16) has been solved by numerical technique
Newton Raphson method. MATLAB software has been used for solving MLE
equations.

3. Model Validation and Comparison

In this Section model validation and comparison has been carried out.

3.1. Model Validation. The proposed model has been validated using the
failure data of a large communication software given in [20]. The data set has
been given in Table 1. The software consists of two components. The subsystem
2 has been introduced in the system at time ¢ = 23 months. During the time
t = 25 to t = 30 months the subsystem 2 shows high failure where as subsystem
1 has shown very less failure during the same period. Due to this reason it is
difficult to fit a model which can give a very accurate prediction. The failure

Table 1: Software Failure data

Month Sub-System 1 Sub-System 2 System Month Sub-System I Sub-System 2 System

1 2 NA 2 26 1 19 20
2 11 NA 11 27 0 12 12
3 18 NA 18 28 0 13 13
4 10 NA 10 29 0 26 26
5 12 NA 12 30 1 32 33
6 4 NA 4 31 0 8 8
7 28 NA 28 32 0 8 8
8 6 NA 6 33 0 11 11
9 7 NA 7 34 0 14 14
10 6 NA 6 35 1 7 8
11 17 NA 17 36 0 7 7
12 31 NA 31 37 1 7 8
13 8 NA 8 38 0 0 0
14 7 NA 7 39 0 2 2
15 10 NA 10 40 0 3 3
16 2 NA 2 41 0 2 2
17 2 NA 2 42 0 5 5
18 0 NA 0 43 1 2 3
19 3 NA 3 44 1 3 4
20 2 NA 2 45 0 4 4
21 1 NA 1 46 0 1 1
22 1 NA 1 47 1 2 3
23 1 3 4 48 0 1 1
24 0 3 3 49 0 0 0
25 1 38 39 50 1 1 2

data has been normalized by taking the log transformation and then it has been
used to estimate the parameters. The estimated values of model parameters for
subsystem 1 and 2 are a; = 195, as = 237, by = 0.0808 and b, = 0.0780. The
actual number of error present in subsystem 1 and subsystem 2 are 198 and 234
respectively. The reason of such a difference has been described earlier. The

An Improved Additive Model for Reliability Analysis of Software 495

final expression of m(t) for subsystem 1, 2 and the software system is given in
the following Eq.17, Eq.18 and Eq.19 respectively:

by ekt

mi(t) =a1(1—e *1) (17)
—bgthtl
ma(t) = az(l —e #1) (18)
—bytht1
ar(l—e *1), 0 <t <23,
— _pytktl bkl
m(t) = al(l—eb’iT)—kag(l—ebgT), t>23 (19)

The graphs between actual and predicted errors for subsystem 1, 2 and software
system are plotted in Fig. 1, 2 and 3.

Failure >

12 ¢ 10013 1A 1Y 22 25 IR 31 54 3Y 40 4% 4R 49

Time (in months] ---=

Fig. 1. Prediction graph of Subsystem 1

Failures >

Crg. Failures

twsrees Predicted Failures

1 4 7 1013 15 1% 22 25 28 31 34 37 40 43 55 =%

Time{inmaenths] --->

Fig. 2. Prediction graph of Subsystem 2

Criginal Failures

Fallure —>

“sseass Predicted Failures

1 4 ¢ 1013 16 B9 22 25 PE 31 34 37 40 43 46 4y

Time {in months] >

Fig. 3. Prediction graph of the whole system

496 S. Chatterjee, S. Nigam, J.B. Singh and L.N. Upadhyaya

3.2. Comparison. Here the proposed model has been compared with additive
model given in [20]. Akaike information criterion (AIC), root mean squarer error
(RMSE) has been used for comparison. x? goodness of fitness has been used for
model fitting. The AIC value has been calculated using the formula given in [1]
as follows

—2In(maximum likelihood) + 2r

2
AIC = ~ 202 + r— (20)

n

where 7 is the number of parameters, n is the total data points and o2 is the
error variance. The RMSE has been calculated using the formula

> (v — 45)

n

RMSE = (21)

where y; denotes the original failure given in the data set and y; is the predicted
failure at the time points j,(j =1,2,--- ,n).
The x? goodness of fit has been computed as

2 = Uoli) — £.6))?
=2 (22)

where fo(7), fe(i) represents actual and predicted faults respectively.
The computed values of AIC and RMSE are compiled in Table 2.

Table 2. AIC and RMSE values of the models

Models AIC RMSE
Additive Model by Xie & Wohlin [20] 9.5922 140.2860
Proposed Model 8.2589 84.0898

The computed values of AIC and RMSE in Table 2 shows that the proposed
model performs better than the model given in [20]. The computed x? goodness
of fit at 1% level of significance for proposed model is 10.6 whereas the tabulated
value is 74.90. Hence the proposed model is accepted at 1% level of significance.

4. Conclusion

This paper proposes an improved additive model for estimating reliability of
a software with modular structure. The important feature of this paper is the
introduction of the concept of imperfect debugging and time dependent error
detection rate. The proposed model is more realistic and will be very useful
for software reliability analysis. There is a further scope of improvement in the
model with time dependent error introduction rate. Also, one can try with differ-
ent error detection and introduction rate for different components to get better
results. The proposed model can further be improved by considering depen-
dency between different software modules. The proposed model will be helpful

An Improved Additive Model for Reliability Analysis of Software 497

for reliability professionals who are interested in architecture based analysis for
software. The model can also be used for software consisting of more modules.

REFERENCES

1. George E.P. Box, Gwilym M. Jenkins and G.C. Reinsel, Ttme Series Analysis Forecasting
and Control, San Francisco, California, U.S.A.: Holden-Day, 1976.

2. R.C. Cheung, A User-Oriented Software Reliability Model, IEEE Transactions on Software
Engineering, SE.-6(2) (1980), 118-125.

3. A.L. Goel, K. Okumoto, A Time-Dependent Error Detection Rate Model for Software
Reliability and Other Performance Measure, IEEE Trans. On Rel., 28 (1979), 206-211.

4. S.S. Gokhale and K.S. Trivedi, Dependency Characterization in Path-Based Approaches
to Architecture-Based Software Reliability Prediction, Proc. of IEEE Workshop on
Application-Specific Software Engineering and Technology, (1998), 86-89.

5. S.S. Gokhale, W. Eric Wong, K.S. Trivedi and J.R. Horgan, An Analytical Approach to
Architectural-Based Software Reliability Prediction, IEEE International Computer Perfor-
mance and Dependability Symposium (IPDS), (1998), 13-22.

6. S.S.Gokhale, K.S. Trivedi, Analytical Models for Architecture-Based Software Reliability
Prediction: A Unification Framework, IEEE Transactions on Reliability, 55(4) (2006),
578-590.

7. S.S. Gokhale, Architecture-Based Software Reliability Analysis: Overview and Limitations,
IEEE Transactions on Dependable and Secure Computing, 4(1) (2007), 32-40.

8. Katerina Goseva-Popstojanova, A.P. Mathur, K.S. Trivedi, Comparison of Architecture-
Based Software Reliability Models, Proc. 12 th International Symposium on Software Reli-
ability Engineering, (2001), 22-31.

9. Vivek Goswami and Y.B. Achraya, Method for Reliability Estimation of COTS Compo-
nents based Software Systems, Proceedings of 20th International Symposium on Software
Reliability Engineering, ISSRE, (2009).

10. S. Krishnamurthy and A.P. Mathur, On the estimation of Reliability of a Software System
Using Reliabilities of its Components, Proceedings The Eighth International Symposium
on Software Reliability Engineering, (1997), 146-155.

11. P. Kubat, Assessing Reliability of Modular Software, Operational research Letters, 8
(1989), 35-41.

12. J.C. Laprie, Dependability evaluation of software systems in operations, IEEE Transac-
tions on Software Engineering, 10(6) (1984), 701-714.

13. B. Littlewood, A Reliability Model for Systems with Markov Structure, Applied Statistics,
24(2) (1975), 172-177.

14. J.H. Lo, S.Y. Kuo, M.R. Lyu and C.Y. Huang, Optimal Resource Allocation and Reliability
Analysis for Component-Based Software Applications, Proceedings of the 26 th Annual
International Computer Software and Applications Conference (COMPSACO02), (2002),
7-12.

15. M.R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

16. Y.K. Malaiya, M.N. Li, J.M Bieman. and R. Karcich, Software Reliability Growth with
Test Coverage, IEEE Transactions on Reliability, 51(4) (2002), 420-426.

17. J.D. Musa, A. Iannino, and K. Okumoto, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill New York, 1987.

18. H. Pham, System Software Reliability, Springer, 2006.

19. Wen-Li Wang, D. Pan, M.H. Chen, Architectural based software reliability modeling, The
Journal of Systems and Software, 79 (2006), 132-146.

20. M. Xie and C. Wohlin, An Additive Reliability Model for the Analysis of Modular Software
Failure Data, In Proc. 6 th International Symposium on Software Reliability Engineering,
(1995), 188-194.

498 S. Chatterjee, S. Nigam, J.B. Singh and L.N. Upadhyaya

21. M. Xie, Software Reliability Modeling, World Scientific, Singapore, 1991.
22. M. Zhao and M. Xie, On the Log-Power NHPP Software Reliability Model, Proceedings 3
rd International Symposium on Software Reliability Engineering, (1992), 14-22.

S. Chatterjee has obtained his B.Sc (Mathematics) from T.D.B. College, Raniganj, The
University of Burdwan, India. He obtained M.Sc (Mathematics) and Ph.D from IIT Kharag-
pur, India. His area of research is software reliability modeling. Presently Dr. Chatterjee
is working as Associate Professor, in the Dept. of Applied Mathematics, Indian School of
Mines (ISM) Dhanbad, India. He has served G.I.LE.T, Orissa and SMIT, Sikkim, India, as
a faculty. He has total eleven years of teaching and research experience. He has quite a
good number of international and national publications. He has reviewed papers for vari-
ous national and international journals. His areas of interest are Software Reliability, O.R.,
Stochastic Process, and Fuzzy Set.

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India.
e-mail: chatterjee_subhashis@rediffmail.com

S. Nigam received his M.Sc degree in Mathematics from IIT Kanpur in 2007. He is cur-
rently pursuing Ph.D degree in Applied Mathematics from Indian School of Mines Dhanbad.
His research interests are software reliability modeling, neural networks, genetic algorithms
and statistical modeling.

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India.
e-mail: shobhitngm@gmail.com

J.B. Singh received his M.Sc. degree in Mathematics in 2007 from Banaras Hindu Univer-
sity Varanasi, India. He is currently pursuing Ph.D. in Applied Mathematics from Indian
School of Mines Dhanbad, India. His research interests include software reliability modeling,
time series, fuzzy time series, genetic algorithm and artificial neural network.

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India.
e-mail: jeetendraOl@gmail.com

L.N. Upadhyaya has been a faculty in the University of Gorakhpur, Gorakhpur and
Banaras Hindu University, Varanasi, India. He joined Indian School of Mines Dhanbad,
India, in 1977 and currently a Professor in the Dept. of Applied Mathematics. He has more
than 30 years of teaching/research experience. He has published more than 50 publications
in national and international journals. His area of interest is Sampling Strategies, Statistical
Inference under Conditional Specification and Reliability Theory.

Department of Applied Mathematics, Indian School of Mines, Dhanbad-826004, India.
e-mail: lnupadhyaya@yahoo.com

