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ON FUNCTIONS DEFINED BY ITS FOURIER TRANSFORM

HONG TAE SHIM∗ AND JOONG SUNG KWON

Abstract. Fourier transform is well known for trigonometric systems. It
is also a very useful tool for the construction of wavelets. The method

of constructing wavelets has evolved as times went by. We review some
methods. Then we do some calculations on wavelets defined by its Fourier
transform.
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1. Introduction

Wavelets are a fairly simple mathematical tool with a great variety of possible
applications. An Orthonormal wavelet is a function ψ ∈ L2(R) such that the
system {ψjk = 2j/2ψ(2jx+ k), j, k ∈ Z} is an orthonormal basis of ψ ∈ L2(R).

There are two classes of equalities, involving the Fourier Transform, ψ̂, of ψ that
characterized orthonormal wavelets. The first one is∑

k∈Z

ψ̂(2j(ξ + 2lπ))ψ̂(ξ + 2lπ) = δ0j (1)

for a.e ξ ∈ R whenever j ≥ 0. The second class of equation is

(i)
∑
k∈Z

|ψ̂(2jξ)|2 = 1 (2)

(ii)
∑
k∈Z

ψ̂(2jξ)ψ̂(2j(ξ + (2m+ 1)2π)) = 0 (3)

a.e. whenever m ∈ Z. The first one is equivalent to the orthonomality of the
system and the second one is equivalent to the completeness of this system {ψjk}
in L2(R). When ψ is band-limited, the sums in the first and second equalities
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are finite for each ξ. A function is said to be band-limited if its Fourier transform
has compact support. Lemarie and Meyer [10] has constructed a band-limited
wavelet having a Fourier transform that is infinitely differentiable.

The great value of orthogonality is to make expansion coefficient easy to
compute. The prototype of orthonormal wavelet is the Haar function, which
is piecewise constant. The defect in piecewise constant is that they are very
poor at approximation. Representing a smooth function requires higher order
of differentiability.

The construction of wavelet rather begins with a function ϕ called scaling
function. There is a well-known method for constructing compactly supported
wavelet bases in L2(R). It starts with the two - scale difference (or refinement,
or dilation) equation

ϕ(x) =

N∑
k=M

2ckϕ(2x− k), (4)

where, at this point, the only condition on the complex numbers ck is that∑
ck = 1. In order to solve the this equation we first define the trigonometric

polynomial

m0(z) =
∑
k

=MNcke
ikz.

Then the inverse Fourier transform ϕ of the entire function

A(z) =

∞∏
j=1

m0(2
−jz)

is a solution of (4). In general, ϕ is a distribution with compact support contained
in the interval [M,N ]. If ϕ (or equivalently A) is in L2(R) and m0 satisfies
Cohen’s criterion [18, Def. 5.2], then ϕ is a scaling function of multiresolution
analysis. Corhen’s criterion is satisfied if m0 does not have zeros in [−π/2, π/2].
Then a standard definition leads to the associated wavelet and the corresponding
wavelet basis of L2(R).

So far we talked about single scaling function. A method using vector valued
function appeared. The idea was first introduced in [4,5]. It starts with r func-
tions, ϕ1, ϕ2, · · · , ϕr and we store them in a vector Φ(x) = (ϕ1(x)ϕ2(x) · · ·ϕr(x))T .
In this case Φ satisfies a matrix refinement equation

Φ(x) =
N∑

k=0

CkΦ(2x− k), (5)

where Ck are r × r matrices.
Here we want to mention about wavelets based on prolate spheroidal wave

function [20]. The continuous prolate shperoidal wave functions (PSWFs) are
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those that are most highly localized simultaneously in both the time and fre-
quency domain. This fact was discovered by Slepian and his collaborators and
was presented in a series of articles [11], [12], [14]-[16] about forty years ago.
Since then the study of PSWFs has been an active area of research in both
electrical engineering and mathematics. The PSWFs are concentrated on the
interal [−τ, τ ] and, of course depend on the two parameters σ and τ . There are
several ways of characterizing PSAFs , one of which is as the eigenfucntions of
an integral operator

σ

π

∫ τ

τ

φn,σ,τ (x)S(
σ

π
(t− x))dx = λn,σ,τ (t), (6)

where S(t) = sinπt
πt , the parameter comes from the interval of concentration and

the parameter comes from the support of the Fourier transform. PSWFs are
closely related to the Fourier transform. Indeed, the Fourier transform of φn,σ,τ

is given by

φ̂n,σ,τ (ω) = (−1)n
√

2πτ

σ
λn,σ,τφn,σ,τ (

τω

σ
)χσ(ω), (7)

where χσ(ω) is the characteristic function of [−σ, σ]. Therefore the inverse
Fourier transform gives us still another formula

φn,σ,τ (x) = (−1)n
√

2πτ

σ
λn,σ,τ

1

2σ

∫ τ

τ

φn,σ,τ (
τω

σ
)dω. (8)

In short, we may classify multiresolution analysis into three categories as follows;
orthogonal bases, semi-orthogonal bases, nonorthogonal biorthogonal bases.

2. Overshoot of wavelet expansions at discontinuity

The overshoot of an approximation to a function near a discontinuity is called
Gibbs phenomenon, which has been recognized for over a century. When a func-
tion is represented by the trigonometric series, one can see that its graph exhibits
an overshoot or downshoot near the point of jump discontinuity of the function.
At the beginning, this undesirable phenomenon was understood as the reason
that the series expansion was approximated by a finite sum out of infinite series.
To the contrary of the earlier guess, the overshoot (or downshoot) can not not
be removed. Instead, the ratio of overshoot to the jump converges to a cer-
tain constant, the Gibbs constant, as the partial sum is taken to infinite series.
But it is not unique to the trigonometric series. It has been shown to exist for
many other approximations. In most cases, it is an undesirable aspect of the
approximation since it involves oscillations near the discontinuity. Foster [3] and
Richard [13] demonstrated a Gibbs phenomenon using piecewise linear continu-
ous and spline functions respectively. The same holds for approximations based
on Fourier transforms, Lagrange polynomial and trigonometric interpolation.
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We shall try to discuss the characteristics that lead to Gibbs phenomenon in
the case of Fourier series.

Let f(x) = π/2sgn(x)− x/2, |x| < π. Then the Fourier series of f(x) is

fn(x) =
∞∑

n=1

sinnx

n
=

∞∑
n=1

∫ x

0

cosntdt (9)

= lim
n→∞

∫ x

0

(
1

2
+

n∑
k=1

cos kt

)
dt− x

2
(10)

= lim
n→∞

(
π

∫ x

0

Dn(t)dt

)
− x

2
, (11)

where Dn is the Dirichlet kernel given by

Dn(x) =
1

2π

n∑
k=−n

eikx =
1

2π

sin(n+ 1
2 )x

sin 1
2x

.

We suppose f satisfies a left and right Lipschitz condition at 0. Then the series
converges to 0 at 0. We investigate the partial sums of the series as x −→ 0+.
Then we have

π

∫ x

0

Dn(t) =

∫ x

0

(
sinnt cosnt

2 sin 1
2

+
cosnt

2

)
(12)

=

∫ x

0

sinnt

t
dt+

∫ x

0

sinnt

(
cos t/2

2 sin t/2

)
dt+

∫ x

0

cosnt

2
dt, (13)

for x > 0. The second and third integral on the last line of (13) converges
uniformly to 0. This leaves only the last integral, which may be written as

I(nx) =

∫ n

0

x
sin t

t
dt −→

∫ ∞

0

sin t

t
dt =

π

2
, for fixedx > 0.

If we take the sequence xn = π
n , the integral becomes

I(nxn) =

∫ π

0

sin t

t
dt >

π

2
.

Hence the partial sums of the given function at xn are given by

Sn(xn) = I(nxn)−
xn
2

+ ϵn −→
∫ π

0

sin t

t
dt,

which converges to a value > f(0+).

Gibbs phenomenon is also found in wavelet expansions involving both orthog-
onal and sampling series of wavelets [9] as well as continuous wavelet transforms
[6]. Gibbs phenomenon in wavelet expansions was studied by Kelly [5]. Kelly
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showed that Daubechies’ compactly supported wavelets exhibit this phenome-
non at the origin and computed the size of them by using computer. It has also
been shown by Shim and Volkmer [17] that a Gibbs phenomenon occurs virtually
all types of continuous orthogonal wavelets. It also occurs at approximations of
vector valued wavelet expansion, which was shown by Ruch [2]. We also discuss
the characteristics that lead to Gibbs phenomenon in wavelet expansions.

Each wavelet system has an associated ”multiresolution analysis” consisting
of a nested sequence {Vm} of subspaces of L2(R) where the space Vm is the closed
linear span of {ϕ(2mt−n)}n∈Z . A function f in L2(R) can be approximated by
its projection Pmf onto Vm;

(Pmf)(x) = fm(x) =

∫ ∞

−∞
qmn(x, y)f(y)dy (14)

=
∑
n∈Z

< ϕmn, f > ϕmn(x− n), (15)

where

q(x, y) =
∑
n∈Z

ϕ(x− n)ϕ(y − n), ϕmn(x) = 2m/2ϕ(2mx− n). (16)

For the uniform convergence of this series on the interval of continuity, we refer
the work of Walter [19, p. 12, pp. 116-128]. The necessary and sufficient
condition[9] for Gibbs phenomenon on the right (or on the left) to exist is

G(x) :=

∫ ∞

0

q(a, y)dy > 1 for some x > 0 (17)

(or

∫ ∞

0

q(x, y)dy < 0 for some x < 0). (18)

We list some of the results based on this criteria as follows;

Theorem 1 ([9]). Let ϕ ∈ Sr be a scaling function and f : R → R be a square
integrable bounded function with jump discontinuity at 0. Then the wavelet
expansion of f shows a Gibbs’ phenomenon at the right hand side of 0 if and
only if there is an a > 0 such that

∫∞
0
q(a, t)dt > 1 and it shows a Gibbs’

phenomenon at the left hand side of 0 if and only if there is an a < 0 such that∫∞
0
q(a, t)dt < 0.

Theorem 2 ([17]). Let ϕ be a continuous scaling function which is differen-
tiable at a dyadic number with nonvanishing derivative there, and which satis-
fies |ϕ(x)| ≤ K(1 + |x|)−β , β > 3 for x ∈ R. Then the corresponding wavelet
expansion shows a Gibbs phenomenon at the right hand side or left hand side
of 0.
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Theorem 3 ([2]). Let Φ = (ϕ1, · · · , ϕA)T be a continuous, compactly supported
scaling vector with polynomial accuracy at least 2. If the multiresolution analysis
is orthogonal or Φ has a dual biorthogonal basis Φ∗ that is compactly supported,
then the corresponding wavelet expansion shows a Gibbs’ phenomenon at least
one side of 0.

3. Calculations over functions defined by the Fourier transform

Some times we may be interested in calculating the maximun size of overshoot
when Gibbs phenomenon occurs. It depends on the choice of x in the formula
(17). Some wavelets are defined by its Fourier transform. Cardinal B-spline is
of them. In this case, we need to convert the formula in terms of the Fourier
transform. The k-th order cardinal B-spline N [k] is defined as the k-th fold
convolution of the characteristic function of the interval [0, 1] for k = 2, 3, · · · .
These functions are not scaling function in the sense of section 2 because the
orthogonal condition is not satisfied. The corresponding orthogonalized scaling
function ϕ[k] leads to Battle-Lemarie wavelets. These are defined as the function
whose Fourier transform is given by

ϕ̂[k](ω) =

(
1− e−iω

iω

)k

σk(ω)
− 1

2 , (19)

where (see [1, p. 216])

σk(ω) =
(
sin

ω

2

)2k∑
n

(
ω

2
+ nπ)−2k. (20)

We note that the space V0 = V
[k]
0 consists of all square integrable and k − 2

times continuously differentiable functions that agree with a polynimial function
of degree at most k − 1 on each interval [n, n+ 1] for n ∈ Z. Now we have

ϕ̂[k](ω) = e−iωk/2

(
sinω/2

ω/2

)k

σk(ω)
− 1

2 (21)

= e−iωk/2

(
2

ω

)k
1√
r2k(ω)

, (22)

where rk(ω) =
∑

n
1

(ω
2 +nπ)k

. By taking x ∈ Z we have

q̂[k](x, ω) = ϕ̂[k](ω)
∑
n

ϕ̂[k](ω − 2nπ)eiωx, (23)

q̂[k](x, ω)

iω
= ϕ̂[k](ω)

∑
n

ϕ̂[k](ω − 2nπ)
cosωx+ i sinωx

iω
. (24)

We also have
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∑
n

ϕ̂[k](ω − 2nπ) = e−ikω/2σk
− 1

2 (ω) sink
ω

2

∑
n

1

(ω2 − nπ)k
(25)

= e−ikω/2

(∑
n

1

(ω2 + nπ)2k

)− 1
2 ∑

n

1

(ω2 − nπ)k
(26)

= e−ikω/2 rk(ω)√
r2k(ω)

. (27)

Now we take Qk(ω) as

Qk(ω) := ϕ̂[k](ω)
∑
n

ϕ̂[k](ω − 2nπ) = (
2

ω
)k
rk(ω)

r2k(ω)
. (28)

By observing

rk(−ω) =
∑
n

1

(−ω
2 + nπ)k

= (−1)k
∑
n

1

(ω2 − nπ)k
= (−1)krk(ω), (29)

we can see Q(ω) is even function;

Qk(−ω) = (−1)k(
2

ω
)k

(−1)krk(ω)

r2k(ω)
= Qk(ω).

Here we impose one condition with ϕ ∈ Sr, which is defined as

|ϕ(k)(x)| ≤ Cpk(1 + |x|)−p, k = 0, 1, · · · , r; p ∈ Z, x ∈ R.

Then we have the Fourier transform formula for the equation (14) as follows.

Theorem 4. For scaling function ϕ ∈ Sr and ϕ̂(ω) ≥ 0, we have∫ ∞

0

q(x, y)dy =
1

2π
pv

∫ ∞

−∞

¯̂q(x, ω)

iω
dω +

1

2
.

Proof. For a scaling function ϕ ∈ Sr, its Fourier transform ϕ̂ satisfies ϕ̂(2nπ) =

δ0n if ϕ̂(0) ≥ 0 (see [19, p. 41]). Let h be the Heavyside functional

h(t) =

{
1, t ≥ 0

0, t < 0.

Then we claim that

ĥ(ω) = πδ(ω) + pv
1

iω
,

where ĥ is the Fourier transform of h, δ(ω) is the delta functional and pv 1
iω is

the Cauchy principal value of
∫∞
−∞

ϕ(ω)
iω dω when it is applied to a test function
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ϕ. This can be proved as follows. For any test function ϕ, i.e., infinitely smooth
and rapidly decreasing functions, we have

< ĥ(ω), ϕ(ω) > =< h(t), ϕ̂(t) >

=

∫ ∞

−∞
h(t)ϕ̂(t)dt

=

∫ ∞

0

∫ ∞

−∞
ϕ(ω)e−iωtdωdt.

By using the Fubini’s theorem, the double integral in the final equality turns out

lim
T→∞

∫ T

0

∫ ∞

−∞
ϕ(ω)e−iωtdωdt

= lim
T→∞

∫ ∞

−∞
ϕ(ω)

(∫ T

0

e−iωtdt

)
dω

=

∫ ∞

−∞

1

iω
ϕ(ω)dω − lim

T→∞

∫ ∞

−∞

e−iωT

iω
ϕ(ω)dω

= < Pv
1

iω
, ϕ > − lim

T→∞

∫ ∞

−∞

e−iωT

iω
ϕ(ω)dω.

The last integral can be written as

lim
T→∞

∫ ∞

−∞

(
ϕ(ω)

iω
cosTωdω +

ϕ(ω)

iω
sinTωdω

)
(30)

By the fact [4, p. 177], we have

lim
T→∞

sinTω

πω
−→ δ(ω),

and the second term in (30) converges to πϕ(0). By the fact [7, p. 191], the first
term in (30) converges to zero. Hence we have

< ĥ(ω), ϕ(ω) > =< pv
1

iω
, ϕ > + < πδ(ω), ϕ(ω) >

=< pv
1

iω
+ πδ(ω), ϕ(ω) > .

Therefore we have

ĥ(ω) = πδ(ω) + Pv
1

iω
.

Then we have, by parseval’s equality,
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∫ ∞

0

q(x, y)dy =

∫ ∞

−∞
h(y)q(x, y)dy

=
1

2π

∫ ∞

−∞
ĥ(ω)¯̂q(x, ω)dω

=
1

2π
< ĥ(·), ¯̂q(x, ·) > .

By taking the Fourier transform of q(x, y) with respect to x and using the poisson
summation formula , we obtain

¯̂q(x, ω) =
¯̂
ϕ(ω)

∑
n

ϕ(x− n)eiωn

=
¯̂
ϕ(ω)

∑
n

ϕ̂(ω − 2πn)ei(ω−2πn)x.

From the fact ϕ̂(2nπ) = δ0n, we have ¯̂q(x, 0) = 1. By noticing ĥ(ω) = pv
(

1
iω

)
+

πδ(ω), where pv is the Cauchy’s principal value and δ is the delta functional, we
obtain the result. �
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