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CONVERGENCE OF MULTISPLITTING METHODS WITH

DIFFERENT WEIGHTING SCHEMES†

SEYOUNG OH, JAE HEON YUN∗ AND YU DU HAN

Abstract. In this paper, we first introduce a special type of multisplitting
method with different weighting scheme, and then we provide convergence
results of multisplitting methods with different weighting schemes corre-

sponding to both the AOR-like multisplitting and the SSOR-like multi-
splitting.
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1. Introduction

In this paper, we consider multisplitting methods with different weighting
schemes for solving a linear system of the form

Ax = b, x, b ∈ Rn, (1)

where A ∈ Rn×n is a large sparse nonsingular matrix.
For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x are

nonnegative (positive), and |x| denotes the vector whose components are the
absolute values of the corresponding components of x. For two vectors x, y ∈ Rn,
x ≥ y (x > y) means that x − y ≥ 0 (x − y > 0). These definitions carry
immediately over to matrices. For a square matrix A, diag(A) denotes a diagonal
matrix whose diagonal part coincides with the diagonal part of A. Let ρ(A)
denote the spectral radius of a square matrix A. Varga [9] showed that for any
two square matrices A and B, |A| ≤ B implies ρ(A) ≤ ρ(B).

A matrix A = (aij) ∈ Rn×n is called an M -matrix if aij ≤ 0 for i ̸= j and A
is nonsingular with A−1 ≥ 0. The comparison matrix ⟨A⟩ = (αij) of a matrix

Received October 31, 2011. Accepted January 15, 2012. ∗Corresponding author.
†This work was supported by the research grant of the Chungbuk National University in 2011.

c⃝ 2012 Korean SIGCAM and KSCAM.

593



594 SeYoung Oh, Jae Heon Yun and Yu Du Han

A = (aij) is defined by

αij =

{
|aij | if i = j

−|aij | if i ̸= j
.

A matrix A is called an H-matrix if ⟨A⟩ is an M -matrix.
A representation A = M −N is called a splitting of A if M is nonsingular. A

splitting A = M −N is called regular if M−1 ≥ 0 and N ≥ 0. It is well known
that if A = M −N is a regular splitting of A, then ρ(M−1N) < 1 if and only if
A−1 ≥ 0 [1, 9]. A splitting A = M−N is called an H-compatible splitting of A if
⟨A⟩ = ⟨M⟩ − |N |. It was shown in [5] that if A is an H-matrix and A = M −N
is an H-compatible splitting of A, then ρ(M−1N) < 1.

This paper is organized as follows. In Section 2, we introduce a special type
of multisplitting method with different weighting scheme for solving the linear
system (1), and then we provide convergence results of multisplitting methods
with different weighting schemes corresponding to both the AOR-like multisplit-
ting and the SSOR-like multisplitting. Lastly, some concluding remarks are
withdrawn.

2. Multisplitting method with different weighting schemes

In this section, we study convergence of a special type of multisplitting method
with different weighting schemes for solving the linear system (1).

Let (Mk, Nk, Ek), k = 1, 2, · · · , ℓ, be a multisplitting of A. Given a parameter
λ ∈ [0, 1] and an initial vector x0, multisplitting method with different weighting
schemes (depending on λ) for solving Ax = b is defined by [11]

xi+1 = Hλxi +Gλb

= xi +Gλ(b−Axi), i = 0, 1, 2, · · · , (2)

where

Gλ =
ℓ∑

k=1

Ek
λMk

−1Ek
1−λ and Hλ = I −GλA. (3)

Here, Ek
λ denotes the diagonal matrix obtained from Ek by replacing all di-

agonal entries by their λ-th power when for λ ̸= 0, and Ek
0 := I. The case

λ = 1 is the multisplitting method with postweighting which is usually called
the multisplitting method and has been extensively studied in the literature,
see [2, 3, 4, 7, 8, 10, 12]. The case λ = 1

2 is called the multisplitting method
with symmetric weighting. As is pointed out in [11], symmetric weighting is the
appropriate choice when using certain multisplittings as preconditioners for the
conjugate gradient method, provided A is symmetric. The case λ = 0 is called
the multisplitting method with preweighting [6].

We first introduce a special type of multisplitting (Mk, Nk, Ek), k = 1, 2, · · · , l,
of A which is described below. For simplicity of exposition, we assume that ℓ = 3.
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Let A be partitioned into

A =


A1 −C12 −C13 −C14

−C21 A2 −C23 −C24

−C31 −C32 A3 −C34

−C41 −C42 −C43 A4

 , (4)

where Ai’s are square matrices. Let Ak = Bk −Ck (1 ≤ k ≤ ℓ+1) be a splitting
of Ak. Let

M1 =


B1 0 0 0
0 B2 0 0
0 0 B3 0

−C41 0 0 B4

 , E1 =


I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 e1I

 ,

M2 =


B1 0 0 0
0 B2 0 0
0 0 B3 0
0 −C42 0 B4

 , E2 =


0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 e2I

 ,

M3 =


B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 −C43 B4

 , E3 =


0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 e3I

 ,

Nk = Mk −A (1 ≤ k ≤ 3),

(5)

where
∑ℓ

k=1 ek = 1. Using this multisplitting (Mk, Nk, Ek), k = 1, 2, 3, · · · , ℓ, of
A, Gλ and Hλ are of the form

Gλ =

ℓ∑
k=1

Ek
λMk

−1Ek
1−λ

=


B1

−1 0 0 0
0 B2

−1 0 0
0 0 B3

−1 0
e1

λB4
−1C41B1

−1 e2
λB4

−1C42B2
−1 e3

λB4
−1C43B3

−1 B4
−1

 ,

Hλ = I −GλA =


B1

−1C1 B1
−1C12 B1

−1C13 B1
−1C14

B2
−1C21 B2

−1C2 B2
−1C23 B2

−1C24

B3
−1C31 B3

−1C32 B3
−1C3 B3

−1C34

β1 β2 β3 β4

 ,
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where

βi =

ℓ∑
k=1,k ̸=i

ek
λB4

−1C4,kBk
−1Ck,i

+ (1− ei
λ)B4

−1C4,i + ei
λB4

−1C4,iBi
−1Ci for i = 1, 2, · · · ℓ,

β4 =

ℓ∑
k=1

ek
λB4

−1C4,kBk
−1Ck,4 +B4

−1C4.

Theorem 2.1 ([4, 11]). Let (Mk, Nk, Ek), k = 1, 2, · · · , ℓ, be a multisplitting of

A with Mk and Ek defined as in (5), Gλ =
∑ℓ

k=1 Ek
λMk

−1Ek
1−λ and Hλ =

I −GλA.

(a) If A−1 ≥ 0, Ak = Bk −Ck is a weak regular splitting of Ak and Cij ≥ 0,
then ρ(Hλ) < 1 for all λ ∈ [0, 1]

(b) If A is an H-matrix and Ak = Bk − Ck is an H-compatible splitting of
Ak, then ρ(Hλ) < 1 for all λ ∈ [0, 1].

We now provide a convergence result of multisplitting method with different
weighting schemes corresponding to the AOR-like multisplitting of the form (5)
when A is an H-matrix.

Theorem 2.2. Assume that A is an H-matrix with A = D − F , where D =
diag(A). Let (Mk, Nk, Ek) (1 ≤ k ≤ ℓ) be a multisplitting of A with Mk and Ek

defined as in (5), where

Bk =
1

ω
(Dk − γLk), Ck =

1

ω
((1− ω)Dk + (ω − γ)Lk + ωVk) , (6)

Dk = diag(Ak), Lk is a strictly lower triangular matrix and Vk is a general
matrix satisfying Vk = Dk − Lk − Ak. If 0 < γ ≤ ω < 2

1+α and ⟨Ak⟩ =

|Dk| − |Lk| − |Vk|, then for all λ ∈ [0, 1],

ρ(Hλ) < 1,

where Gλ =
∑ℓ

k=1 Ek
λM−1

k Ek
1−λ, Hλ = I −GλA and α = ρ(|D|−1|F |).

Proof. We consider the first case where 0 < ω ≤ 1. Since ⟨Ak⟩ = |Dk| − |Lk| −
|Vk|, the corresponding coefficients of (ω− γ)Lk and ωVk have the same sign for
k = 1, 2, · · · , ℓ+ 1. From equation (6), one obtains for k = 1, 2, · · · , ℓ+ 1,

⟨Bk⟩ − |Ck| = ⟨ 1
ω
(Dk − γLk)⟩ − | 1

ω
((1− ω)Dk + (ω − γ)Lk + ωVk)|

=
1

ω
(|Dk| − γ|Lk|)−

1

ω
((1− ω)|Dk|+ (ω − γ)|Lk|+ ω|Vk|)

= |Dk| − |Lk| − |Vk| = ⟨Ak⟩.

Hence, Ak = Bk −Ck is an H-compatible splitting of Ak for k = 1, 2, · · · , ℓ+ 1.
By Theorem 2.1, ρ(Hλ) < 1 for 0 < ω ≤ 1. Next we consider the case where
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1 < ω < 2
1+α . For k = 1, 2, · · · , ℓ+ 1, let

C̃k =
1

ω
((ω − 1)Dk + (ω − γ)Lk + ωVk) ,

Ãk = Bk − C̃k.

Then, it can be easily seen that for k = 1, 2, · · · , ℓ+ 1,

Ãk =
2− ω

ω
Dk − Lk − Vk.

Let Ã = 2−ω
ω D − F . Then ⟨Ã⟩ = 2−ω

ω |D| − |F | is a regular splitting of ⟨Ã⟩.
Since 1 < ω < 2

1+α , ρ
(

ω
2−ω |D|−1|F |

)
= ω

2−ωρ(|D|−1|F |) = ωα
2−ω < 1. Hence,

⟨Ã⟩−1 ≥ 0. Since Ak = Dk−Lk−Vk, Ãk is clearly a block diagonal components

of Ã. Notice that for k = 1, 2, · · · , ℓ+ 1,

⟨Bk⟩ − |C̃k| =
1

ω
(|Dk| − γ|Lk|)−

1

ω
((ω − 1)|Dk|+ (ω − γ)|Lk|+ ω|Vk|)

=
2− ω

ω
|Dk| − |Lk| − |Vk| = ⟨Ãk⟩.

Note that ⟨Ã⟩ can be written as

⟨Ã⟩ =


⟨Ã1⟩ −|C1,2| · · · −|C1,ℓ+1|

−|C2,1| ⟨Ã2⟩ · · · −|C2,ℓ+1|
...

...
. . .

...

−|Cℓ+1,1| −|Cℓ+1,2| · · · ⟨Ãℓ+1⟩


Let for k = 1, 2, · · · , ℓ,

M̃k =



⟨B1⟩ 0 · · · 0
. . .

0 ⟨Bk⟩

0
. . .

...
...

...
. . .

0
0 · · · −|Cℓ+1,k| 0 · · · 0 ⟨Bℓ+1⟩


and Ñk = M̃k − ⟨Ã⟩.

Then (M̃k, Ñk, Ek), k = 1, 2, · · · ℓ, is a multisplitting of ⟨Ã⟩ of the form (5).

Since ⟨Ã⟩−1 ≥ 0 and ⟨Ãk⟩ = ⟨Bk⟩ − |C̃k| is a regular splitting of ⟨Ãk⟩ for

k = 1, 2, · · · , ℓ+ 1, ρ(H̃λ) < 1 from Theorem 2.1, where

H̃λ =


⟨B1⟩−1|C̃1| ⟨B1⟩−1|C1,2| · · · ⟨B1⟩−1|C1,ℓ| ⟨B1⟩−1|C1,ℓ+1|
⟨B2⟩−1|C2,1| ⟨B2⟩−1|C̃2| · · · ⟨B2⟩−1|C2,ℓ| ⟨B2⟩−1|C2,ℓ+1|

...
...

. . .
...

...

⟨Bℓ⟩−1|Cℓ,1| ⟨Bℓ⟩−1|Cℓ,2| · · · ⟨Bℓ⟩−1|C̃ℓ| ⟨Bℓ⟩−1|Cℓ,ℓ+1|
β̃1 β̃2 · · · β̃ℓ β̃ℓ+1

 ,
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β̃i =

ℓ∑
k=1,k ̸=i

ek
λ⟨Bℓ+1⟩−1|Cℓ+1,k|⟨Bk⟩−1|Ck,i|+ (1− ei

λ)⟨Bℓ+1⟩−1|Cℓ+1,i|

+ ei
λ⟨Bℓ+1⟩−1|Cℓ+1,i|⟨Bi⟩−1|C̃i| for i = 1, 2, · · · ℓ,

β̃ℓ+1 =
ℓ∑

k=1

ek
λ⟨Bℓ+1⟩−1|Cℓ+1,k|⟨Bk⟩−1|Ck,ℓ+1|+ ⟨Bℓ+1⟩−1|C̃ℓ+1|.

Since Bk is an H-matrix for 1 ≤ k ≤ ℓ+ 1, one obtains

|Bk
−1| ≤ ⟨Bk⟩−1 and |Ck| ≤ |C̃k|.

Using these inequalities, |Hλ| ≤ H̃λ is obtained. Thus, ρ(Hλ) < 1 for 1 < ω <
2

1+α . Therefore, ρ(Hλ) < 1 for 0 < γ ≤ ω < 2
1+α . �

If γ = ω in Theorem 2.2, then Theorem 2.2 reduces to a convergence result
of multisplitting method with different weighting schemes corresponding to the
SOR-like multisplitting of the form (5) when A is an H-matrix.

Note that if A is an M -matrix, then A is an H-matrix. We easily obtain the
following corollary which is a convergence result of multisplitting method with
different weighting schemes corresponding to the AOR-like multisplitting of the
form (5) when A is an M -matrix, respectively.

Corollary 2.3. Assume that A is an M -matrix with A = D − F , where D =
diag(A). Let (Mk, Nk, Ek), k = 1, 2, · · · , ℓ, be a multisplitting of A with Mk and
Ek defined as in (5), where

Bk =
1

ω
(Dk − γLk), Ck =

1

ω
((1− ω)Dk + (ω − γ)Lk + ωVk) ,

Dk = diag(Ak), Lk is a nonnegative strictly lower triangular matrix and Vk is a
nonnegative general matrix satisfying Vk = Dk − Lk −Ak. If 0 < γ ≤ ω < 2

1+α ,

then for all λ ∈ [0, 1],
ρ(Hλ) < 1,

where Gλ =
∑ℓ

k=1 Ek
λMk

−1Ek
1−λ, Hλ = I −GλA and α = ρ(D−1F ).

Proof. Since Lk ≥ 0 and Vk ≥ 0, ⟨Ak⟩ = Ak = Dk−Lk−Vk = |Dk|−|Lk|−|Vk|.
From Theorem 2.2, the proof is complete. �

We next provide a convergence result of multisplitting method with different
weighting schemes corresponding to the SSOR-like multisplitting of the form (5)
when A is an H-matrix.

Theorem 2.4. Assume that A is an H-matrix with A = D − F , where D =
diag(A). Let (Mk, Nk, Ek), k = 1, 2, · · · , ℓ, be a multisplitting of A with Mk and
Ek defined as in (5), where

Bk =
1

ω(2− ω)
(D − ωLk)Dk

−1(Dk − ωVk),

Ck =
1

ω(2− ω)

(
(1− ω)Dk + ωLk

)
Dk

−1
(
(1− ω)Dk + ωVk

)
,

(7)
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Dk = diag(A), Lk is a strictly lower triangular matrix and Vk is a general matrix
satisfying Vk = Dk − Lk − Ak. If 0 < ω < 2

1+α and ⟨Ak⟩ = |Dk| − |Lk| − |Vk|,
then for all λ ∈ [0, 1],

ρ(Hλ) < 1,

where α = ρ(|D|−1|F |), Gλ =
∑ℓ

k=1 Ek
λM−1

k Ek
1−λ and Hλ = I −GλA.

Proof. We consider the first case where 0 < ω ≤ 1. From the assumption, one
obtains for k = 1, 2, · · · , ℓ+ 1,

⟨Ak⟩ =
1

ω(2− ω)
(|Dk| − ω|Lk|)|Dk|−1(|Dk| − ω|Vk|)

− 1

ω(2− ω)

(
(1− ω)|Dk|+ ω|Lk|

)
|Dk|−1

(
(1− ω)|Dk|+ ω|Vk|

)
.

For k = 1, 2, · · · , ℓ+ 1, let

B̃k =
1

ω(2− ω)
(|Dk| − ω|Lk|)|Dk|−1(|Dk| − ω|Vk|),

C̃k =
1

ω(2− ω)

(
(1− ω)|Dk|+ ω|Lk|

)
|Dk|−1

(
(1− ω)|Dk|+ ω|Vk|

)
.

Then ⟨Ak⟩ = B̃k − C̃k is a regular splitting of ⟨Ak⟩ for k = 1, 2, · · · , ℓ + 1. Let
for k = 1, 2, · · · , ℓ,

M̃k =



B̃1 0 · · · 0
. . .

0 B̃k

0
. . .

...
...

...
. . .

0

0 · · · −|Cℓ+1,k| 0 · · · 0 B̃ℓ+1


and Ñk = M̃k − ⟨A⟩.

Then (M̃k, Ñk, Ek), k = 1, 2, · · · , ℓ, is a multisplitting of ⟨A⟩ of the form (5).

Since ⟨A⟩−1 ≥ 0, ρ(H̃λ) < 1 from Theorem 2.1, where

H̃λ =


B̃−1

1 C̃1 B̃−1
1 |C1,2| · · · B̃−1

1 |C1,ℓ| B̃−1
1 |C1,ℓ+1|

B̃−1
2 |C2,1| B̃−1

2 C̃2 · · · B̃−1
2 |C2,ℓ| B̃−1

2 |C2,ℓ+1|
...

...
. . .

...
...

B̃−1
ℓ |Cℓ,1| B̃−1

ℓ |Cℓ,2| · · · B̃−1
ℓ C̃ℓ B̃−1

ℓ |Cℓ,ℓ+1|
β̃1 β̃2 · · · β̃ℓ β̃ℓ+1

 , (8)
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β̃i =

ℓ∑
k=1,k ̸=i

ek
λB̃−1

ℓ+1|Cℓ+1,k|B̃−1
k |Ck,i|+ (1− ei

λ)B̃−1
ℓ+1|Cℓ+1,i|

+ ei
λB̃−1

ℓ+1|Cℓ+1,i|B̃−1
i C̃i for i = 1, 2, · · · ℓ,

β̃ℓ+1 =
ℓ∑

k=1

ek
λB̃−1

ℓ+1|Cℓ+1,k|B̃−1
k |Ck,ℓ+1|+ B̃−1

ℓ+1C̃ℓ+1.

Since Ak is an H-matrix, Dk − ωLk and Dk − ωVk are H-matrices for k =
1, 2, · · · , ℓ+ 1. Hence one obtains

|(Dk − ωLk)
−1| ≤ (|Dk| − ω|Lk|)−1

,

|(Dk − ωVk)
−1| ≤ (|Dk| − ω|Vk|)−1

,

|Bk
−1| ≤ B̃−1

k and |Ck| ≤ C̃k.

Using these inequalities, |Hλ| ≤ H̃λ is obtained. Therefore, ρ(Hλ) < 1 for
0 < ω ≤ 1. Next we consider the case where 1 < ω < 2

1+α . Let

Ĉk =
1

ω(2− ω)

(
(ω − 1)|Dk|+ ω|Lk|

)
|Dk|−1

(
(ω − 1)|Dk|+ ωVk

)
.

Then one obtains for k = 1, 2, · · · , ℓ+ 1,

B̃k − Ĉk =
ω

2− ω

(
2− ω

ω
|Dk| − |Lk| − |Vk|

)
.

Let Ã = |D| − ω
2−ω |F | and Ãk = 2−ω

ω |Dk| − |Lk| − |Vk| for k = 1, 2, · · · , ℓ + 1.

Since 1 < ω < 2
1+α , ρ

(
|D|−1 ω

2−ω |F |
)

= ω
2−ωρ(|D|−1|F |) = ωα

2−ω < 1. Thus,

Ã−1 ≥ 0. Note that Ã can be written as

Ã =


ω

2−ω Ã1 − ω
2−ω |C1,2| · · · − ω

2−ω |C14|
− ω

2−ω |C21| ω
2−ω Ã2 · · · − ω

2−ω |C24|
...

...
. . .

...

− ω
2−ω |Cℓ+1,1| − ω

2−ω |Cℓ+1,2| · · · ω
2−ω Ãℓ+1

 .

Let for k = 1, 2, · · · , ℓ,

M⋆
k =



B̃1 0 · · · 0
. . .

0 B̃k

0
. . .

...
...

...
. . .

0

0 · · · − ω
2−ω |Cℓ+1,k| 0 · · · 0 B̃ℓ+1


and N⋆

k = M⋆
k − Ã.
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Then (M⋆
k , N

⋆
k , Ek), k = 1, 2, · · · , ℓ, is a multisplitting of Ã of the form (5).

Since ω
2−ω Ãk = B̃k − Ĉk is a regular splitting of ω

2−ω Ãk for k = 1, 2, · · · , ℓ + 1,

ρ(H⋆
λ) < 1 from Theorem 2.1, where

H⋆
λ =

ω

2− ω


2−ω
ω B̃−1

1 Ĉ1 B̃−1
1 |C1,2| · · · B̃−1

1 |C1,ℓ| B̃−1
1 |C1,ℓ+1|

B̃−1
2 |C2,1| 2−ω

ω B̃−1
2 Ĉ2 · · · B̃−1

2 |C2,ℓ| B̃−1
2 |C2,ℓ+1|

...
...

. . .
...

...

B̃−1
ℓ |Cℓ,1| B̃−1

ℓ |Cℓ,2| · · · 2−ω
ω B̃−1

ℓ Ĉℓ B̃−1
ℓ |Cℓ,ℓ+1|

β⋆
1 β⋆

2 · · · β⋆
ℓ β⋆

ℓ+1

 ,

β⋆
i =

ω

2− ω

ℓ∑
k=1,k ̸=i

ek
λB̃−1

ℓ+1|Cℓ+1,k|B̃−1
k |Ck,i|+ (1− ei

λ)B̃−1
ℓ+1|Cℓ+1,i|

+ ei
λB̃−1

ℓ+1|Cℓ+1,i|B̃−1
i Ĉi for i = 1, 2, · · · ℓ,

β⋆
ℓ+1 =

ω

2− ω

ℓ∑
k=1

ek
λB̃−1

ℓ+1|Cℓ+1,k|B̃−1
k |Ck,ℓ+1|+ B̃−1

ℓ+1Ĉℓ+1.

Since |B−1
k | ≤ B̃−1

k , |Ck| ≤ Ĉk and ω
2−ω > 1, |Hλ| ≤ H⋆

λ is obtained. Thus,

ρ(Hλ) < 1 for 1 < ω < 2
1+α . Therefore, ρ(Hλ) < 1 for all 0 < ω < 2

1+α . �

The following corollary for an M -matrix A can be directly obtained from
Theorem 2.4.

Corollary 2.5. Assume that A is an M -matrix with A = D − F , where D =
diag(A). Let (Mk, Nk, Ek), k = 1, 2, · · · , ℓ, be a multisplitting of A with Mk

and Ek defined as in (5), where Bk = 1
ω(2−ω) (Dk − ωLk)Dk

−1(Dk − ωVk),

Ck = 1
ω(2−ω)

(
(1− ω)Dk + ωLk

)
Dk

−1
(
(1− ω)Dk + ωVk

)
, Dk = diag(Ak), Lk is

a nonnegative strictly lower triangular matrix and Vk is a nonnegative general
matrix satisfying Vk = Dk − Lk −Ak. If 0 < ω < 2

1+α , then for all λ ∈ [0, 1],

ρ(Hλ) < 1,

where α = ρ(D−1F ), Gλ =
∑ℓ

k=1 Ek
λM−1

k Ek
1−λ and Hλ = I −GλA.

3. Concluding remarks

In this paper, we provided convergence results of a special type of multi-
splitting methods with different weighting schemes corresponding to both the
AOR-like multisplitting and the SSOR-like multisplitting. Future work will in-
clude numerical experiments for these multisplitting methods in order to find an
optimal parameter λ.
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