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CONVERGENCE OF MULTISPLITTING METHODS WITH
DIFFERENT WEIGHTING SCHEMES'
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ABSTRACT. In this paper, we first introduce a special type of multisplitting
method with different weighting scheme, and then we provide convergence
results of multisplitting methods with different weighting schemes corre-
sponding to both the AOR-like multisplitting and the SSOR-like multi-
splitting.
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1. Introduction

In this paper, we consider multisplitting methods with different weighting
schemes for solving a linear system of the form

Az =b, z,beR™, (1)

where A € R™*"™ is a large sparse nonsingular matrix.

For a vector z € R, x > 0 (z > 0) denotes that all components of = are
nonnegative (positive), and |z| denotes the vector whose components are the
absolute values of the corresponding components of z. For two vectors x, y € R",
x >y (r > y) means that x —y > 0 (x —y > 0). These definitions carry
immediately over to matrices. For a square matrix A, diag(A) denotes a diagonal
matrix whose diagonal part coincides with the diagonal part of A. Let p(A)
denote the spectral radius of a square matrix A. Varga [9] showed that for any
two square matrices A and B, |A| < B implies p(A) < p(B).

A matrix A = (a;;) € R"*" is called an M-matriz if a;; <0 for i # j and A
is nonsingular with A=' > 0. The comparison matriz (A) = (a;;) of a matrix
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A = (aj;) is defined by

_ ) eyl ifi=j
Oy = oy
{|aij| ifi#j
A matrix A is called an H-matriz if (A) is an M-matrix.

A representation A = M — N is called a splitting of A if M is nonsingular. A
splitting A = M — N is called regular if M—! > 0 and N > 0. It is well known
that if A = M — N is a regular splitting of A, then p(M~'N) < 1 if and only if
AL >011,9]. A splitting A = M — N is called an H -compatible splitting of A if
(A) = (M) —|N|. It was shown in [5] that if A is an H-matrix and A =M — N
is an H-compatible splitting of A, then p(M~'N) < 1.

This paper is organized as follows. In Section 2, we introduce a special type
of multisplitting method with different weighting scheme for solving the linear
system (1), and then we provide convergence results of multisplitting methods
with different weighting schemes corresponding to both the AOR-like multisplit-
ting and the SSOR-like multisplitting. Lastly, some concluding remarks are
withdrawn.

2. Multisplitting method with different weighting schemes

In this section, we study convergence of a special type of multisplitting method
with different weighting schemes for solving the linear system (1).

Let (Mg, Nk, Ex), k=1,2,--- £, be a multisplitting of A. Given a parameter
A € [0, 1] and an initial vector zq, multisplitting method with different weighting
schemes (depending on \) for solving Az = b is defined by [11]

Tit1 = Hxz; + G)b )
=2+ Ga(b— Azy), i =0,1,2,--, (2)

where
¢

GA = ZE}C)\MkilEkliA and H)\ =1- GAA (3)
k=1

Here, E,> denotes the diagonal matrix obtained from E} by replacing all di-
agonal entries by their A-th power when for A # 0, and E.° := I. The case
A = 1 is the multisplitting method with postweighting which is usually called
the multisplitting method and has been extensively studied in the literature,
see [2, 3, 4, 7, 8, 10, 12]. The case A = % is called the multisplitting method
with symmetric weighting. As is pointed out in [11], symmetric weighting is the
appropriate choice when using certain multisplittings as preconditioners for the
conjugate gradient method, provided A is symmetric. The case A = 0 is called
the multisplitting method with preweighting [6].

We first introduce a special type of multisplitting (M, Ng, Fx), k= 1,2,--- 1,
of A which is described below. For simplicity of exposition, we assume that £ = 3.
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Let A be partitioned into
Al _CIZ _013 _C14
A —Co1 Ay —Ch —Cy (@)
—C31 —C32 A3  —Cz |’
_C41 _042 _043 A4

where A;’s are square matrices. Let Ay = By — Cy (1 < k < {+1) be a splitting
of Ay. Let

B, 0 0 0 I 00 0
[ o By 0 0 oo o0 o
My = 0 0 By 0| Er=19 00 o |
—Cyi 0 0 By 0 0 0 el
Bi 0 0 0 00 0 0
o By 0 o0 o1 0 o0
M=1o o B o Tlooo0 o] (5)
0 —-Cps 0 By 0 0 0 eol
By 0 0 0 00 0 0
o B 0 0 oo o0 o
Ms=14 B; 0|’ Es=1og 01 0]
0 0 —Cu By 0 0 0 esl

N =M, —-A (1<k<3),

where Zizl er = 1. Using this multisplitting (M, Nk, Ex), k =1,2,3,--- ¢, of

A, Gy and Hy are of the form

4
Gy = ZEkAMkilEkliA
k=1

Bt 0 0 0
- 0 Byt 0 0
- 0 0 Bs™! 0o |’
e1*By 0By e’By ' CuaBy™! e3*By 03Byt By?
B, 7'C, B,7'Ci BiT'Ciz ByT'Cu
By 'Cy By 'Cy By 'Chz By 'Cuy
Hy=T-GA= D2 3 ) ,
A A B3 'Csy B3 'C3as B3 'Cs B3y 'Cay
B1 B2 B3 Ba
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where
¢
Bi = Z e By Cu By O
k=1,k#i
+ (1 — ei)‘)B471C'4,,' + ei)‘B4flC'47iBflC'¢ fOI‘ Z = 1, 2, e é,
¢
B4 = Z ex By 'Cy By ' Cru+ By ' Cy.
k=1
Theorem 2.1 ([4, 11]). Let (My, Ny, Ex),k =1,2,--- £, be a multisplitting of
A with My, and E}, defined as in (5), Gy = Zi:l E M TYELST and Hy, =
I —G,A.
(a) If A=t >0, Ay = By, — Cy, is a weak regular splitting of Ay, and C;; > 0,
then p(Hy) <1 for all A € [0,1]
(b) If A is an H-matriz and Ay, = B — Cy is an H-compatible splitting of
Ay, then p(Hy) <1 for all X € [0,1].

We now provide a convergence result of multisplitting method with different
weighting schemes corresponding to the AOR-like multisplitting of the form (5)
when A is an H-matrix.

Theorem 2.2. Assume that A is an H-matriz with A = D — F, where D =
diag(A). Let (M, Ny, Ex) (1 <k < {) be a multisplitting of A with My, and Ej,
defined as in (5), where

By = %(Dk—m» Ci =§<<1_w)pk+<w_7>Lk+ka>, (6)

Dy = diag(Ag), Ly is a strictly lower triangular matriz and Vy, is a general
matrix satisfying Vi, = Dy — Ly — Ax. If 0 < v < w < H—% and (Ay) =
|Dy| — |Lk| — |Vkl|, then for all X € [0,1],

p(H)\) < 1a
where Gy = Y4 B MI VB Hy = T — GhA and o = p(|D| 7| F).

Proof. We consider the first case where 0 < w < 1. Since (Aj) = |Dy| — |Li| —
|Vi|, the corresponding coefficients of (w — )Ly and wV}, have the same sign for
k=1,2,--- ,£+ 1. From equation (6), one obtains for k =1,2,--- , £+ 1,

(Bi) — |Ck| = <£(Dk —vLy)) — % (1 —w)Dy, + (w — )Lk +wVy)|
= (Dl ~A1L4l) ~ = (1 = @)Dl + (DIl + wlVi)
= [Di| = [Li| = [Vi| = (Ak).

Hence, Ay = By — C}, is an H-compatible splitting of Ay for k =1,2,--- £+ 1.
By Theorem 2.1, p(Hy) < 1 for 0 < w < 1. Next we consider the case where
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l<w< 25 Fork=1,2--- (+1,let

-1
Ck = ; ((w — 1)Dk + (w — 'Y)Lk =+ (JJVk) R
Ak = By — ék.
Then, it can be easily seen that for k =1,2,--- £+ 1,
. 9
Av=""%Dy - L, — W
w
Let A = 2=9D — F. Then (A) = 2=¢|D| — |F| is a regular splitting of (A).
Since 1 < w < 25, p(ﬁwrlm) — 2 p(ID|"YF|) = £ < 1. Hence,
([1)_1 > 0. Since Ay, = Dy, — Ly — Vi, Ay, is clearly a block diagonal components
of A. Notice that for k =1,2,--- £+ 1,

(Br) — Ikl = = (1Dk] 1| Lil) = ((w — DIDg| + (w0 — )| el + Vi)

1
w
2—w .

= T|Dk| — | Li| = [Vi| = (A).

Note that (A) can be written as

(Ay) —[Ci2| o —[Creta]
. —[C2 (A2) - —=|Co]
() = : : . :
—[Cesral —ICyra| -+ (Apga)
Let for k=1,2,--- ¢,
0 (Bk)
Mk: 0 and Nk:Mk—</~1>
0
0 - —|Co1kl 0 -+ 0 (Bey1)

Then (Mk, Vi, Ex), k = 1,2,---{, is a multisplitting of (A) of the form (5).
Since (A)~1 > 0 and (Ax) = (By) — [Ck| is a regular splitting of (Aj) for
k=1,2,--- ,£+1, p(Hy) <1 from Theorem 2.1, where

(B))7YCi|  (B1)7YCia| - (Bu)7YCuel  (Bi)7HChe

(B2) HCanl  (B2) HCo| o (B2)7YCoul (B2) HCopsl
Hy = : : : : :

(B)MCea|  (Be) MCea| -+ (Bo)HCel  (Be)HCrpal

B1 B2 e Be Bet+1
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4

Bi= > e (Ber1) M Co1kl(Br) Y Chul + (1= ) (Bega) " Coa il
k=1 ki

+ 61‘)\<Bg+1>71|Cg+171‘|<Bi>71|C’i| for i = 1,2, ce 'E,

¢
Beir =Y ex™ (Bep1) M Corr k| (Br) M Crear| + (Bega) ' Crpl.
k=1
Since By, is an H-matrix for 1 < k < ¢+ 1, one obtains

|Br Y < (Bip)™' and |Ci| < |Chl.

Using these inequalities, |Hy| < Hy is obtained. Thus, p(H)) < 1 for 1 < w <

p%a' Therefore, p(Hy) < 1for 0 <y <w < H% O

If v = w in Theorem 2.2, then Theorem 2.2 reduces to a convergence result
of multisplitting method with different weighting schemes corresponding to the
SOR-like multisplitting of the form (5) when A is an H-matrix.

Note that if A is an M-matrix, then A is an H-matrix. We easily obtain the
following corollary which is a convergence result of multisplitting method with
different weighting schemes corresponding to the AOR-like multisplitting of the
form (5) when A is an M-matrix, respectively.

Corollary 2.3. Assume that A is an M-matriz with A = D — F, where D =
diag(A). Let (Mg, Nk, Ex),k =1,2,--- £, be a multisplitting of A with My, and
Ey, defined as in (5), where
1 1

Bk = ;(Dk — ’}/Lk)7 Ck = a ((1 — W)Dk + (OJ - "/)Lk +ka),
Dy, = diag(Ayx), Ly is a nonnegative strictly lower triangular matriz and Vj, is a
nonnegative general matriz satisfying Vi, = Dy — L — Ag. If0 <y <w < H%’
then for all A € [0,1],

p(H)\) <1,

where Gy = Yt By’ My BN Hy = I — GAA and o = p(D~'F).

Proof. Since Lk Z 0 and Vk Z O7 <Ak> = Ak = Dk—Lk —Vk = |Dk| — ‘Lkl — |Vk|
From Theorem 2.2, the proof is complete. U

We next provide a convergence result of multisplitting method with different
weighting schemes corresponding to the SSOR-like multisplitting of the form (5)
when A is an H-matrix.

Theorem 2.4. Assume that A is an H-matriz with A = D — F, where D =
diag(A). Let (Mg, Ni, Ex),k=1,2,--- £, be a multisplitting of A with My, and
Ey. defined as in (5), where

_ 1
Cw(2-w)
_ 1
Cw(2-w)

By (D — wLi) Dy, (Dy — wVi),

(7)

Ch ((1 —w)Dy, +ka)Dk_1((1 —w)Dy, +ka),
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Dy, = diag(A), Ly, is a strictly lower triangular matriz and Vy, is a general matriz
satisfying Vi = Dy — Ly, — Ag. If0<w< 1—1-% and <Ak> = |Dk| — |Lk| — |Vk|,
then for all A € [0,1],

p(Hx) <1,
where o = p(|D|7Y|F]), Gx = Yo B M B and Hy = T — GAA.

Proof. We consider the first case where 0 < w < 1. From the assumption, one
obtains for k =1,2,--- £+ 1,

_ 1
w2 -w)
1

= 5=y (1= @I+ LD (1= @) Da + Vi)

(Ag) (IDg| = w| Lk )| Die| = (|Dk| — w]Vi|)

For k=1,2,--- £+1, let

~ 1
Bi = w(2—w)
~ 1
Cr = w(2 —w)

(IDx| = w|L|)|Di| " (|1 Dy | — w|Vi|),

(1= w)IDk| + w| L) [ Dr] 7 (1 = w) [ D] + w]|Vil)-

Then (Ay) = By, — Cy is a regular splitting of (4) for k =1,2,--- £+ 1. Let
fork=1,2,--- ¢,

B 0 0
0 By
Mkz 0 and NkZMk—<A>
0 ~
0 - —|Corkl 0 -+ 0 By

Then (Mg, Ny, Ey), k =1,2,--- ¢ is a multisplitting of (A) of the form (5).
Since (A)~! >0, p(Hy) < 1 from Theorem 2.1, where

B{'Cy BYCial -+ BrYCud BrtChel
By Can|  By'Co -+ By'Cay| By'|Coes

Hy = : : : : (8
ByYCeal B7YCeal -+ Bi'Ce B7YCresl

B1 B2 e Be Bet1
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¢
Bi= > e’ Bih|Cenl By Crul + (1= ) B [Cryril
k=1 ki
+ ei/\Bg__&1|Ce+1,z‘\Bi_léi for 1 =1,2,---4,
‘
Ber1 =Y e B [Corr | By Choia| + B Cryr.
k=1

Since Ay is an H-matrix, Dy — wL; and Dy — wV}, are H-matrices for k =
1,2,--- ,£+4 1. Hence one obtains

|(Dy, — wLi) 7| < (|Dg] — w|Ly])~*,
|(Dy, — wVie) ™Y < (|1Dk] — w|Vi) ™",
‘Bk_l‘ < B;l and |Ck| < ék.

—_

Using these inequalities, |[Hy| < Hy is obtained. Therefore, p(Hy) < 1 for
0 < w < 1. Next we consider the case where 1 < w < p%a Let
A 1
Cr=—"——((w—-1)D Li|)|De| ™ ((w = 1)|D Vi)
EE E—w) ((w = V)| Dg| + w| L) [ Dr| = ((w = 1) Dy| + wVi)

Then one obtains for k =1,2,--- , £+ 1,
~ A w 2—w
B = 2 (D - 1l - ).
— W w
Let A = [D| — ;% |F| and Aj, = 22| Dy| — |Ly| — |Vi| for k= 1,2,--- £+ 1.
Since 1 < w < 12, p<|D|‘12L|F|> = S p(ID|"YF|) = #2 < 1. Thus,

—w w
A1 > 0. Note that A can be written as
st —351C2l - =350
i 325102 3o A2 =250l
—5251Ce1al =555 1Ce12l 0 FE5 A

Let for k=1,2,--- ,¢,

0 By,
M} = 0 : and N} = M} — A.
0

0 - 5% [Ceinl 0 -+ 0 Bey
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Then (M}, N;{,Ey), k = 1,2,--- £, is a multisplitting of A of the form (5).
Since 5#- Ay, = By — C}, is a regular splitting of 5%-Ay for k =1,2,--- £+ 1,
p(H%) < 1 from Theorem 2.1, where

4B B Cual - BrYCugl BrY[Cesl
y By'Can|  239By'Co - By'Cayl  By'|Cau
Hy = : : . : : ,
2—-w o o . R . :

B Cral B 'Ceo| - 252B7Ce By |Cpe

Bt B3 B Bl

14
w o o 55—

B =g— Y. e BihlCual B Okl + (1= e Bk Crnn

k=1,k#i
+ eiABZ£1|C£+1’i|Bfléi for i = 1, 2, c -ﬁ,

4
w ~ . ~ oA
B =5— > e BiCoi k| B Crga| + B Coga.
k=1
Since |B;'| < By!, |Ck] < C and 52- > 1, |H\| < H} is obtained. Thus,
p(Hy) <1lforl<w< IJ%Q Therefore, p(Hy) < 1 for all 0 < w < p%a O

The following corollary for an M-matrix A can be directly obtained from
Theorem 2.4.

Corollary 2.5. Assume that A is an M-matriz with A = D — F, where D =
diag(A). Let (My,Ny,Ey),k = 1,2,--- £, be a multisplitting of A with My

and Ey defined as in (5), where By = ﬁ(Dk — ka)Dk_l(D;€ — wVi),

Cr = m((l — W)Dk +ka)Dk71((1 - w)Dk + ka), Dy = diag(Ak), Ly is
a nonnegative strictly lower triangular matriz and Vi is a nonnegative general

matrix satisfying Vi, = Dy, — L — Ag. If0 < w < 1-&-%’ then for all A € [0,1],

p(Hy) <1,

where o = p(D7LF), Gy = Zizl Ek)‘Mk_lEkk)‘ and Hy =1 — G, A.

3. Concluding remarks

In this paper, we provided convergence results of a special type of multi-
splitting methods with different weighting schemes corresponding to both the
AOR-like multisplitting and the SSOR-like multisplitting. Future work will in-
clude numerical experiments for these multisplitting methods in order to find an
optimal parameter \.
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