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ON INTUITIONISTIC FUZZY PRIME Γ-IDEALS OF

Γ-LA-SEMIGROUPS
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Abstract. In this paper, we introduce and study the intuitionistic fuzzy
prime (semi-prime) Γ−ideals of Γ−LA-semigroups and some interesting
properties are investigated. The main result of the paper is: ifA = ⟨µA, γA⟩
is an IFS in Γ−LA-semigroup S, then A = ⟨µA, γA⟩ is an intuitionistic
fuzzy prime (semi-prime) Γ−ideal of S if and only if for any s, t ∈ [0, 1], the
sets U (µA, s) = {x ∈ S : µA (x) ≥ s} and L (γA, t) = {x ∈ S : γA (x) ≤ t}
are prime (semi-prime) Γ−ideals of S.
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1. Introduction

The fundamental concept of fuzzy subset as a mapping from a non-empty set
S to unit closed interval i.e, f : S −→ [0, 1] , was introduced by L. A. Zadeh
in 1965 [25]. In the following decades the study of fuzzy subset in algebraic
structure has been started in the definitive paper of Rosenfeld 1971 [23]. Fuzzy
subgroup and its important properties were defined and established by Rosenfeld
[23]. In 1981, Kuroki introduced the concept of fuzzy semigroup in his paper
[16]. The concept of a fuzzy ideal in semigroups was first developed by Kuroki.
He studied fuzzy ideals, fuzzy bi-ideals, fuzzy quasi-ideals and fuzzy semiprime
ideals of semigroups [16, 17, 18, 19, 20, 21, 22]. The concept of fuzzy interior
ideals in a semigroup was introduced by Hong [10] and he obtained some related
properties of such ideals. Recently, in [3] M. Aslam et.al., characterized Γ−LA-
semigroup by the properties of generalized fuzzy Γ ideals.

The idea of intuitionistic fuzzy set was first published by K. T. Atanassov in
his pioneer papers [5, 6], as generalization of the notion of fuzzy sets. Gau and
Buehre in [9], presented the concept of vague sets. But, Burillo and Bustine in
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[8], have shown that the notion of vague sets coincides with that of intuitionistic
fuzzy sets. R. Biswas in [7], introduced the notion of intuitionistic fuzzy sub-
group of a group by using the notion of intuitionistic fuzzy sets and obtained
some useful properties. Recently, K. H. Kim and Y. B. Jun in [14], introduced
the notion of intuitionistic fuzzy ideal of semigroup and some basic properties
have been investigated. K. H. Kim and J. G. Lee in [15], initiated the concept
of intuitionistic fuzzy bi-ideal of semigroup and obtained some useful properties.
In 2001, K. H. Kim and Y. B. Jun in [13], introduced the notion of intuitionistic
fuzzy interior ideal of semigroup and some fundamental properties were inves-
tigated. Recently, M. Khan et.al., introduced the notion of intuitionistic fuzzy
ideals in ordered semigroups and obtained some important results in [12]. The
concept of LA-semigroup was first introduced by Kazim and Naseerudin [11].
Let S be a non-empty set. Then, (S, ∗) is called an LA-semigroup, if S is closed
and satisfies the identity (x ∗ y) ∗ z = (z ∗ y) ∗ x for all x, y, z ∈ S, which is
called left invertive law. Later, Q. Mushtaq and others have investigated the
structure further and added many useful results to theory of LA-semigroups.
Recently, S. Abdullah et. al intdroduced the notion of direct product intuition-
istic fuzzy ideals of LA-semigroups in his papers [2, 1]. Recently, T. Shah and
I. Rehman have introduced the concept of Γ-LA-semigroup [24]. Whereas the
Γ-LA-semigroup is a generalization of LA-semigroup.

Our aim in this paper is to introduce and study the intuitionistic fuzzy prime
(semi-prime) Γ-ideals of Γ-LA-semigroups by using the notion of intuitionis-
tic fuzzy set. Main result of the paper is: if A = ⟨µA, γA⟩ be an IFS in
Γ-LA-semigroup S, then A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime (semi-
prime) Γ-ideal of S if and only if for any s, t ∈ [0, 1], the sets U (µA, s) =
{x ∈ S : µA (x) ≥ s} and L (γA, t) = {x ∈ S : γA (x) ≤ t} are prime (semi-prime)
Γ-ideals of S. Moreover if S is a Γ-LA-semigroup and ∅ ̸= P ⊆ S is prime
(semi-prime) Γ-ideal of S, then A = ⟨XP ,XP ⟩ is an intuitionistic fuzzy prime
(semi-prime) Γ-ideal of S.

2. Preliminaries

Let S = {x, y, z, ...} and Γ = {α, β, γ, ...} be two non-empty sets. Then S is
called a Γ-LA-semigroup if it satisfying xγy ∈ S and (xβy)γz = (zβy)γx for all
x, y, z ∈ S and β, γ ∈ Γ. A non-empty set U of a Γ-LA-semigroup S is said to
be a subΓ-LA-semigroup S if UΓU ⊆ U . A left (resp. right) Γ-ideal I of a Γ-
LA-semigroup S is non-empty subset I of S such that SΓI ⊆ I (resp. IΓS ⊆ I).
If I is both a left and a right Γ-ideal of a Γ-LA-semigroup S, then I is called a
Γ-ideal of S. A subΓ-LA-semigroup B of Γ-LA-semigroup S is called bi-Γ-ideal
of S, if (BΓS)ΓB ⊆ B. A Γ-ideal P of Γ-LA-semigroup S is said to be prime if
AΓB ⊆ P implies that either A ⊆ P or B ⊆ P, for all Γ-ideals A and B in S. A
Γ-ideal P is called semi-prime if IΓI ⊆ P implies that I ⊆ P, for any Γ-ideals I
of S. If every Γ-ideal of Γ-LA-semigroup S is a semi-prime, then S is said to be
fully semiprime and if every Γ-ideal is prime, then S is called fully prime. An
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element a of a Γ-LA-semigroup S is called regular if for there exist a ∈ S and
α, β ∈ Γ such that x = (xαa)βx. If every element of a Γ-LA-semigroup S is left
regular, then S is called left regular (See [24]).

A fuzzy set µ in a Γ-LA-semigroup S is called a fuzzy subΓ-LA-semigroup of
S, if µA(xγy) ≥ µA(x) ∧ µA(y) for all x, y ∈ S and γ ∈ Γ. A fuzzy set µ in
a Γ-LA-semigroup S is called a fuzzy bi-Γ-ideal, if µA(xγy) ≥ µA(x) ∧ µA(y)
and µA((xγy)βz) ≥ µA(x) ∧ µA(z) for all x, y, z ∈ S and γ, β ∈ Γ. A fuzzy
set µ in a Γ-LA-semigroup S is called fuzzy left (resp. right) Γ-ideal of S, if
µA(xγy) ≥ µA(y) (resp. µA(xγy) ≥ µA(x)) for all x, y ∈ S and γ ∈ Γ. A
fuzzy set µ in a Γ-LA-semigroup S is called fuzzy Γ-ideal of S, if µ is both
fuzzy left Γ-ideal and fuzzy right Γ-ideal of a Γ-LA-semigroup S. A fuzzy Γ-
ideal of S is called fuzzy prime (semi-prime) Γ-ideal of S if infγ∈Γ µ (xγy) =
max{µ (x) , µ (y)} (µA (x) ≥ µA (xγx) ) for all x, y ∈ S and γ ∈ Γ.

Definition 2.1 ([5, 6]). Let X be a non-empty fixed set. An intuitionistic fuzzy
set (briefly, IFS) A is an object having the form

A = {⟨x, µA(x), γA(x)⟩ : x ∈ X}

where the functions µA : X −→ [0, 1] and γA : X −→ [1, 0] denote the degree of
membership (namely µA(x)) and the degree of nonmembership (namely γA(x))
of each element x ∈ X to the set A, respectively, and 0 ≤ µA(x) + γA(x) ≤ 1
for all x ∈ S. For the sake of simplicity, we use the symbol A = (µA, γA) for the
IFS A = {(x, µA(x), γA(x)) : x ∈ X}.

Definition 2.2 ([3]). An IFS A = (µA, γA) in S is called an intuitionistic fuzzy
right (resp. left) Γ-ideal of S if satisfies µA(xγy) ≥ µA(x) and γA(xγy) ≤ γA(x)
(resp. µA(xγy) ≥ µA(y) and γA(xγy) ≤ γA(y) ) for all x, y ∈ S and γ ∈ Γ.

Lemma 2.1. If A = ⟨µA, γA⟩ and B = ⟨µB , γB⟩ is any intuitionistic fuzzy right
Γ-ideal of a regular Γ-LA-semigroup S, then AΓB = A ∩B

3. Intuitionistic Fuzzy Prime Γ-Ideals of Γ-LA-semigroups

Definition 3.1. Let A = ⟨µA, γA⟩ be an IFS in Γ-LA-semigroup S. Then
A = ⟨µA, γA⟩ is called an intuitionistic fuzzy prime if

(IFP1) infγ∈Γ µA (xγy) = max {µA (x) , µA (y)} ,
(IFP2) supγ∈ΓγA (xγy) = min {γA (x) , γA (y)} , ∀x, y ∈ S and γ ∈ Γ.
An intuitionistic fuzzy Γ-ideal A = ⟨µA, γA⟩ of S is called an intuitionistic

fuzzy prime Γ-ideal of S if it is an intuitionistic fuzzy prime.
Let XP denote the characteristic function of a non-empty subset P of a Γ-

LA-semigroup.

Theorem 3.1. Let S be Γ-LA-semigroup and ∅ ̸= P ⊆ S is prime Γ-ideal of
S. Then, A = ⟨XP ,XP ⟩ is an intuitionistic fuzzy prime Γ-ideal of S, where
XP = 1−XP .
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Proof. Let x, y ∈ S and γ ∈ Γ. If xΓy ⊆ P , then x ∈ P or y ∈ P . Thus we have

inf
γ∈Γ

XP (xγy) = 1 and XP (x) = 1 or XP (y) = 1

inf
γ∈Γ

XP (xγy) = 1 = max {XP (x) ,XP (y)}

and

1− inf
γ∈Γ

XP (xγy) = 0 and 1−XP (x) = 0 or 1−XP (y) = 0

sup
γ∈Γ

XP (xγy) = 0 and XP (x) = 0 or XP (y) = 0

sup
γ∈Γ

XP (xγy) = 0 = min
{
XP (x) ,XP (y)

}
If xΓy * P , then x /∈ P and y /∈ P . Thus we have

inf
γ∈Γ

XP (xγy) = 0, XP (x) = 0 and XP (y) = 0

inf
γ∈Γ

XP (xγy) = 0 = max {XP (x) ,XP (y)}

and

1− inf
γ∈Γ

XP (xγy) = 1, 1−XP (x) = 1 and XP (y) = 1

sup
γ∈Γ

XP (xγy) = 1, XP (x) = 1 and XP (y) = 1

sup
γ∈Γ

XP (xγy) = 1 = min
{
XP (x) ,XP (y)

}
Hence, A = ⟨XP ,XP ⟩ is an intuitionistic fuzzy prime Γ-ideal of S. �

Theorem 3.2. Let P a non-empty subset of S. If A = ⟨XP ,XP ⟩ is an in-
tuitionistic fuzzy prime Γ-ideal of S, then P is a prime Γ-ideal of S, where
XP = 1−XP .

Proof. Suppose that A = ⟨XP ,XP ⟩ is an intuitionistic fuzzy prime Γ-ideal of
S. Let x, y ∈ S such that xΓy ⊆ P . Then, XP (xγy) = 1 for all γ ∈ Γ. So
infγ∈Γ XP (xγy) = 1. Its follows from (IFP1) that

1 = inf
γ∈Γ

XP (xγy) = max {XP (x) ,XP (y)} .

Hence, XP (x) = 1 or XP (y) = 1, so x ∈ P or y ∈ P . Thus, P is a prime. Now,
from (IFP1) that

0 = 1− inf
γ∈Γ

XP (xγy) = sup
γ∈Γ

XP (xγy) = min
{
XP (x) ,XP (y)

}
0 = min {1−XP (x) , 1−XP (y)}

and so 1− XP (x) = 0 or 1− XP (y) = 0 ⇒ XP (x) = 1 or XP (y) = 1, so x ∈ P
or y ∈ P . Thus, P is a prime. �
Lemma 3.3. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S, then
µA and γA are fuzzy prime Γ-ideals of S.
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Proof. Since A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S, so for
any x, y ∈ S and γ ∈ Γ, we have

inf
γ∈Γ

µA (xγy) = max {µA (x) , µA (y)} and

sup
γ∈Γ

γA (xγy) = min {γA (x) , γA (y)}

1− sup
γ∈Γ

γA (xγy) = 1−min {γA (x) , γA (y)}

inf
γ∈Γ

γA (xγy) = max {1− γA (x) , 1− γA (y)}

inf
γ∈Γ

γA (xγy) = max {γA (x) , γA (y)} .

Hence, µA and γA are fuzzy prime Γ-ideals of S. �

Lemma 3.4. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S, then
µA and γA are anti fuzzy prime Γ-ideals of S.

Theorem 3.5. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S,
then �A = ⟨µA, µA⟩ and ♢A = ⟨γA, γA⟩ are intuitionistic fuzzy prime Γ-ideals
of S.

Proof. Since A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S. So for
any x, y ∈ S and γ ∈ Γ, we have

inf
γ∈Γ

µA (xγy) = max {µA (x) , µA (y)}

1− inf
γ∈Γ

µA (xγy) = 1−max {µA (x) , µA (y)}

sup
γ∈Γ

(1− µA (xγy)) = min {1− µA (x) , 1− µA (y)}

sup
γ∈Γ

µA (xγy) = min {µA (x) , µA (y)} .

Hence, �A = ⟨µA, µA⟩ is an intuitionistic fuzzy prime Γ-ideal of S. Similarly,
we have

sup
γ∈Γ

γA (xγy) = min {γA (x) , γA (y)}

1− sup
γ∈Γ

γA (xγy) = 1−min {γA (x) , γA (y)}

inf
γ∈Γ

(1− γA (xγy)) = max {1− γA (x) , 1− γA (y)}

inf
γ∈Γ

γA (xγy) = max {γA (x) , γA (y)} .

Hence, ♢A = ⟨γA, γA⟩ is an intuitionistic fuzzy prime Γ-ideals of S. �

Theorem 3.6. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then, A =
⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S if and only if for any
s, t ∈ [0, 1], the sets U (µA, s) = {x ∈ S : µA (x) ≥ s} ̸= ∅ and L (γA, t) =
{x ∈ S : γA (x) ≤ t} ≠ ∅ are prime Γ-ideals of S.
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Proof. Suppose that A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of
S. Let s, t ∈ [0, 1] such that U (µA, s) and L (µA, t) are non-empty. Now, let
x, y ∈ S such that xΓy ⊆ U (µA, s). Then, µA (xγy) ≥ s for all γ ∈ Γ. This
implies that infγ∈Γ µA (xγy) ≥ s. Since, we have

s ≤ inf
γ∈Γ

µA (xγy) = max {µA (x) , µA (y)}

s ≤ max {µA (x) , µA (y)}
µA (x) ≥ s or µA (y) ≥ s.

Hence, x ∈ U (µA, s) or y ∈ U (µA, s). Thus U (µA, s) is a prime Γ-ideal of S.
Now, let xΓy ∈ L (µA, t). Then, γA (x) ≤ t for all γ ∈ Γ. This implies that
supγ∈Γ γA (x) ≤ t. Since

t ≥ sup
γ∈Γ

µA (xγy) = min {γA (x) , γA (y)}

t ≥ min {γA (x) , γA (y)}
γA (x) ≤ t or γA (y) ≤ t.

Hence, x ∈ L (γA, t) or y ∈ L (γA, t). Thus, L (γA, t) is a prime Γ-ideal of S.
Conversely, suppose that U (µA, s) and L (γA, t) are prime Γ-ideals of S. Let

infγ∈Γ µA (xγy) = s (Since µA (xγy) ∈ [0, 1] , ∀γ ∈ Γ, so infγ∈Γ µA (xγy) exists).
Then, µA (xγy) ≥ s, ∀γ ∈ Γ. So xγy ∈ U (µA, s) , ∀γ ∈ Γ. Since U (µA, s) is a
prime, so x ∈ U (µA, s) or y ∈ U (µA, s) ⇒ µA (x) ≥ s or µA (y) ≥ s, we have

max {µA (x) , µA (y)} ≥ s = inf
γ∈Γ

µA (xγy) . (1)

Since, A = ⟨µA, γA⟩ is an intuitionistic fuzzy Γ-ideals of S, so

µA (xγy) ≥ max {µA (x) , µA (y)} , ∀γ ∈ Γ

inf
γ∈Γ

µA (xγy) ≥ max {µA (x) , µA (y)} (2)

From 1 and 2, we have

inf
γ∈Γ

µA (xγy) = max {µA (x) , µA (y)} .

Now, let supγ∈Γ γA (xγy) = t
(
Since γA (xγy) ∈ [0, 1] , ∀γ ∈ Γ, so supγ∈Γ γA (xγy) exists

)
.

Then γA (xγy) ≤ t, ∀γ ∈ Γ, so xγy ∈ L (γA, t), ∀γ ∈ Γ. Since L (γA, t) is a
prime, so x ∈ L (γA, t) or y ∈ L (γA, t) ⇒ γA (x) ≤ t or γA (y) ≤ t.

min {γA (x) , γA (y)} ≤ t = sup
γ∈Γ

γA (xγy) . (3)

Since, A = ⟨µA, γA⟩ is an intuitionistic fuzzy Γ-ideals of S, so

γA (xγy) ≤ min {γA (x) , γA (y)} ∀γ ∈ Γ

sup
γ∈Γ

γA (xγy) ≤ min {γA (x) , γA (y)} (4)

From 3 and 4, we have

sup
γ∈Γ

γA (xγy) = min {γA (x) , γA (y)}
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Hence A = ⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S. �
Corollary 3.7. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then A =
⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S if and only if for any
s, t ∈ [0, 1], the sets U

s

(µA, s) = {x ∈ S : µA (x) > s} ̸= ∅ and Lt (γA, t) =
{x ∈ S : γA (x) < t} ≠ ∅ are prime Γ-ideals of S.

Corollary 3.8. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then, A =
⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S if and only if for any
s, t ∈ [0, 1], the sets P = {x ∈ S : µA (x) ≥ s and γA (x) ≤ t} ̸= ∅.
Corollary 3.9. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then, A =
⟨µA, γA⟩ is an intuitionistic fuzzy prime Γ-ideal of S if and only if for any

s, t ∈ [0, 1], the sets P
(s,t)

= {x ∈ S : µA (x) > s and γA (x) < t} ≠ ∅.

4. Intuitionistic Fuzzy semi-prime Γ-Ideals

Definition 4.1. Let A = ⟨µA, γA⟩ be an IFS in Γ-LA-semigroup S. Then
A = ⟨µA, γA⟩ is called an intuitionistic fuzzy semi-prime if

(IFP3) µA (x) ≥ µA (xγx) ,
(IFP4) γA (x) ≤ µγA (xγx) ∀x ∈ S and γ ∈ Γ.
An intuitionistic fuzzy Γ-ideal is called an intuitionistic fuzzy semi-prime Γ-

ideal of S if it is an intuitionistic fuzzy semi-prime.

Theorem 4.1. Let S be a Γ-LA-semigroup and ∅ ̸= T ⊆ S is a semi-prime
Γ-ideal of S. Then, A = ⟨XT ,XT ⟩ is an intuitionistic fuzzy semi-prime Γ-ideal
of S, where XT = 1−XT .

Proof. The proof follows from 3.1 �
Theorem 4.2. Let T be a non empty subset of S. If A = ⟨XT ,XT ⟩ is an
intuitionistic fuzzy semi-prime Γ-ideal of S, then T is a semi-prime Γ-ideal of
S, where XT = 1−XT .

Proof. The proof follows from 3.2 �
Theorem 4.3. For any intuitionistic fuzzy subΓ-LA-semigroup A = ⟨µA, γA⟩ of
S. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime, then A (x) = A (xγx)
∀x ∈ S and γ ∈ Γ.

Proof. Let x ∈ S. Then, since A = ⟨µA, γA⟩ is an intuitionistic fuzzy subΓ-LA-
semigroup, we have

µA (x) ≥ µA (xγx) ≥ min {µA (x) , µA (x)} = µA (x)

µA (x) = µA (xγx)

and also, we have

γA (x) ≤ γA (xγx) ≤ max {γA (x) , γA (x)} = γA (x)

γA (x) = γA (xγx)

This completes the proof.. �
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Theorem 4.4. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of
S, then �A = ⟨µA, µA⟩ and ♢A = ⟨γA, γA⟩ are intuitionistic fuzzy semi-prime
Γ-ideals of S.

Proof. The proof follows from 3.5 �

Lemma 4.5. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of S,
then µA and γA are fuzzy prime Γ-ideals of S.

Proof. Straightforward. �

Lemma 4.6. If A = ⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of S,
then γA and γA are anti fuzzy prime Γ-ideals of S.

Theorem 4.7. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then, A =
⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of S if and only if for
any s, t ∈ [0, 1], the sets U (µA, s) = {x ∈ S : µA (x) ≥ s} ̸= ∅ and L (γA, t) =
{x ∈ S : γA (x) ≤ t} ≠ ∅ are semi-prime Γ-ideals of S.

Proof. Suppose that A = ⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal
of S. Let s, t ∈ [0, 1] such that U (µA, s) and L (γA, t) are non-empty. Now let
x ∈ S such that xΓx ⊆ U (µA, s). Then µA (xγx) ≥ s for all γ ∈ Γ. Since

µA (x) ≥ µA (xγx) ≥ s

µA (x) ≥ s.

Hence, x ∈ U (µA, s). Thus U (µA, s) is a semi-prime Γ-ideal of S. Now, let
xΓx ⊆ L (γA, t). Then, γA (xγx) ≤ t for all γ ∈ Γ. Since

γA (x) ≤ γA (xγx) ≤ t

γA (x) ≤ t.

Hence, x ∈ L (γA, t). Thus L (γA, t) is semi-prime Γ-ideal of S.
Conversely, let A = ⟨µA, γA⟩ be an IFS in S such that U (µA, s) and L (γA, t)

are semi-prime Γ-ideals of S. Let suppose A = ⟨µA, γA⟩ is not intuitionistic
fuzzy semi-prime Γ-ideal of S. Then, there exist x◦ ∈ S such that µA (x◦) <
µA (x◦γx◦). Let

s◦ =
1

2
[µA (x◦) + µA (x◦γx◦)] . Then

µA (x◦) < s◦ < µA (x◦γx◦) .

So, x◦γx◦ ∈ U (µA, s◦) but x◦ /∈ U (µA, s◦), a contradiction. Therefore, µA (x) ≥
µA (xγx) for all x ∈ S. Similarly, γA (x) ≤ γA (xγx) for all x ∈ S and γ ∈ Γ.
Hence, A = ⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of S. �

Corollary 4.8. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then, A =
⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of S if and only if for any
s, t ∈ [0, 1], the sets U

s

(µA, s) = {x ∈ S : µA (x) > s} ̸= ∅ and Lt (γA, t) =
{x ∈ S : γA (x) < t} ≠ ∅ are semi-prime Γ-ideals of S.
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Corollary 4.9. Let A = ⟨µA, γA⟩ be IFS in Γ-LA-semigroup S. Then, A =
⟨µA, γA⟩ is an intuitionistic fuzzy semi-prime Γ-ideal of S if and only if for
any s, t ∈ [0, 1], the set U (s,t) = {x ∈ S : µA (x) > s and γA (x) < t} ̸= ∅ is a
semi-prime Γ-ideal of S.

Definition 4.2. An element a of a Γ-LA-semigroup S is called left regular if
for there exist a ∈ S and α, β ∈ Γ such that x = (xαx)βa. If every element of
a Γ-LA-semigroup S is left regular, then S is called left regular. Similarly, for
right regular.

Theorem 4.10. Let S be a left regular. Then, for every intuitionistic fuzzy
right Γ-ideal A = ⟨µA, γA⟩ of S, A (x) = A (xαx) ∀x ∈ S and α ∈ Γ.

Proof. Let x be any element of S. Since S is a left regular, there exist a ∈ S
and α, β ∈ Γ such that x = (xαx)βa. Thus, we have

µA (x) = µA ((xαx)βa) ≥ µA (xαx) ≥ µA (x)

µA (x) = µA (xαx) and

γA (x) = γA ((xαx)βa) ≤ γA (xαx) ≤ γA (x)

γA (x) = γA (xαx)

Hence, A (x) = A (xαx) ∀x ∈ S and α ∈ Γ. �
Lemma 4.11. Every intuitionistic fuzzy right Γ-ideal of a regular Γ-LA-semigroup
S is Γ-idempotent.

Proof. Let A = ⟨µA, γA⟩ be any intuitionistic fuzzy right Γ-ideal of S. Since S
regular, so by Proposition 2.1

AΓA = A ∩A = A

AΓA = A

�
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