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Abstract. In this paper, we propose a new algorithm to modify the
standard Mann’ process to have strong convergence for k-strictly pseudo-
contractive non-self mapping in Hilbert spaces.
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1. Introduction

Let H be a real Hilbert space, K be a nonempty closed convex subset of H.
T : K → H is a k-strictly pseudo contraction if there exists a constant k ∈ [0, 1)
such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ K. (1)

Note that k-strictly pseudo contractions include nonexpansive mappings. That
is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive. It is
also said to be pseudo-contractive if k = 1. T is said to be strongly pseudo-
contractive if there exists a positive constant λ ∈ (0, 1) such that T + λI is
pseudo-contractive. It is easy to see that k-strictly pseudo contractions are be-
tween nonexpansive mappings and pseudo contractions.

In 1953, W.R.Mann [1] introduced the standard Mann’s iterative algorithm
which generates a sequence {xn} by (2):

∀x0 ∈ K, xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 0, (2)

where the sequence {αn} is in (0,1).
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Since then, construction algorithms to modify the standard Mann’s iterative
method for nonexpansive mappings and k-strict pseudo contractions have been
extensively studied by many authors.

It is clear that if T is a nonexpansive mapping with fixed point and the
sequence {αn} is chosen so that αn ∈ (0, 1) and

∑∞
n=1 αn(1 − αn) = ∞, then

the sequence {xn} generated by (2) converges weakly to a fixed point of T . In
1967, Browder and Petryshyn [3] first extended the standard Mann’s method to
k-strictly pseudo-contractive self-mappings in real Hilbert spaces.

Since the sequence {xn} generated by the standard Mann’s iterative method
can only have weak convergence, modified Mann’s iterations have recently been
made to get strong convergence for nonexpansive mappings and k-strictly pseudo
contractions; see, e.g., [2, 4, 6, 8, 9] and references therein.

T.H.Kim and H.K.Xu [4] introduced the following process:
x0 = x ∈ K, arbitrarily chosen,

yn = βnxn + (1− βn)Txn,

xn+1 = αnu+ (1− αn)yn, ∀n ≥ 0,

(3)

where T is a nonexpansive self-mapping ofK, u ∈ K is a given point. Under some
appropriate conditions on the control sequences {αn} and {βn}, they obtained
a strong convergence theorem.

Remark 1.1. A.Moudfi [5] introduced the standard viscosity approximation
method for nonexpansive mappings. Let f be a contraction on H, starting with
an arbitrary initial x0 ∈ H, define a sequence {xn} by:

xn+1 = αnf(xn) + (1− αn)Txn, ∀n ≥ 0, (4)

where {αn} is a sequence in (0, 1). It is proved that under certain appropriate
conditions on {αn}, the sequence {xn} generated by (4) converges strongly to
the unique solution x∗ ∈ C of the variational inequality:

⟨(I − f)x∗, x− x∗⟩ ≥ 0, ∀x ∈ Fix(T ),

where C = Fix(T ).

Yao et al.[6] modified the Mann’s iterative method by using the standard
viscosity approximation method:

x0 = x ∈ K, arbitrarily chosen,

yn = βnxn + (1− βn)Txn,

xn+1 = αnf(xn) + (1− αn)yn, ∀n ≥ 0,

(5)

where T is a nonexpansive self-mapping of K, and f : K → K is a contraction.
Under some mild conditions on the parameters {αn} and {βn}, they proved that
the sequence {xn} defined by (5) converges strongly to a fixed point of T .

Remark 1.2. In 2006, G.Marino and H.K.Xu [7] proposed the following general
iterative method:

x0 ∈ H, xn+1 = αnγf(xn) + (I − αnA)Txn, ∀ n ≥ 0, (6)
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where T is a nonexpansive self-mapping of H, f : H → H is a contraction, and
A is a strongly positive bounded linear operator on H. Under some appropriate
conditions on {αn}, they proved that the sequence {xn} defined by (6) con-
verges strongly to a fixed point x∗ of T , which equivalently solves the variational
inequality:

⟨(γf −A)x̃, x− x̃⟩ ≤ 0, ∀x ∈ Fix(T ),

which is the optimality condition for the minimization problem:

min
x∈C

1

2
⟨Ax, x⟩ − h(x),

where h is a potential function for γf(i.e.,h′(x) = γf(x) for x ∈ H).
Zhou [8] also modified the Mann’s iterative process for non-self k-strict pseudo-

contractions, and obtained strong convergence in Hilbert spaces.
Very recently, X.L.Qin et al.[9] modified the Mann’s iterative method by using

the following composite iteration scheme:
x1 = x ∈ K, arbitrarily chosen,

yn = PK [βnxn + (1− βn)Txn],

xn+1 = αnγf(xn) + (I − αnA)yn, ∀n ≥ 1,

(7)

where T : K → H is k-strictly pseudo contractive mapping, f : K → K is a
contraction, and A is a strongly positive bounded linear operator on K. Under
some mild conditions on the parameters {αn} and {βn}, they proved that the
sequence {xn} defined by (7) converges strongly to a fixed point of T .

In this paper, motivated by Kim and Xu [4], Moudafi [5], Yao et al. [6],
G.Marino and Xu [7], Zhou [8], X.L.Qin et al.[9], we introduce a new composite
algorithm: 

x0 = x ∈ K,

yn = PK [βnxn + (1− βn)Txn]

xn+1 = [I − αn(µF − γf)]yn, ∀n ≥ 0.

(8)

where T is a k-strictly pseudo contraction from K onto H, f is a self-contraction
onK such that ∥f(x)−f(y)∥ ≤ α∥x−y∥ for all x, y ∈ K and F is a k-Lipschitzian
and η-strongly monotone operator on K. {αn} and {βn} are sequences in [0, 1].
Under some certain appropriate assumptions on {αn} and {βn}, We obtain
strong convergence theorems for the k-strictly pseudo contraction. Our results
improve and extend the corresponding results.

2. Preliminaries

Lemma 2.1 ([2]). Assume that {xn} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, ∀ n ≥ 0, (9)

where {γn} is a sequence ∈ (0, 1), and {δn} is a sequence in R such that
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(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then limn→∞ an = 0.

Lemma 2.2 ([3]). Let T : K → H be a k-strictly pseudo-contraction. Define
S : K → H by Sx = λx+ (1 − λ)Tx for all x ∈ K. Then, as λ ∈ [k, 1), S is a
nonexpansive mapping such that F (T ) = F (S).

Lemma 2.3 ([8]). If T is a k-strictly pseudo contraction on a closed convex
subset of K of a real Hilbert space H, then the fixed point set F (T ) is closed
convex so that the projection PF (T ) is well defined.

Lemma 2.4 ([8]). Let T : K → H be a k-strictly pseudo contraction with
F (T ) ̸= ∅, then F (T ) = F (PKT ).

Lemma 2.5 ([10]). Let λ be a number in [0, 1] and µ > 0. Let F : H → H be
a κ-Lipschitzian continuous and η-strongly monotone operator with κ > 0 and
η > 0. Associating with a nonexpansive mapping T on H, define a mapping

Tλ : H → H by Tλx := Tx−λµF (Tx), for all x ∈ H. Let τ = µ(η− µκ2

2 ), thus

Tλ : H → H is a contraction, that is:∥Tλx− Tλy∥ ≤ (1− λτ)∥x− y∥.

3. Main results

Theorem 3.1. Let H be a real Hilbert space, let K be a nonempty closed convex
subset of H such that K ± K ⊂ K. Assume that f : K → K is a contraction
with a coefficient 0 ≤ α < 1. Let T : K → H be a non-self k-strictly pseudo
contraction such that F (T ) ̸= ∅. Let F : K → K be a κ-Lipschitzian continuous
and η-strongly monotone operator with κ > 0 and η > 0. Let 0 < µ < 2η/κ2 and
τ−1
α < γ < µ(η−µκ2/2)/α = τ

α . Let the sequence {xn} generated by (1.3), where
the sequence {αn} and {βn} are in [0, 1] and satisfy the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=0 αn = ∞;
(C2) k ≤ βn ≤ λ < 1, limn→∞ βn = λ for all n ≥ 0;
(C3)

∑∞
n=0 |αn+1 − αn| < ∞ and

∑∞
n=0 |βn+1 − βn| < ∞.

Then {xn} converges strongly to x̃ ∈ F (T ), which also solves the variational
inequality:

⟨(µF − γf)x̃, x− x̃⟩ ≥ 0, ∀x ∈ Fix(T ). (10)

Proof. First, we show that the sequences {xn} and {yn} are all bounded. Take
any p ∈ F (T ), we have

∥yn − p∥2 = ∥PK [βnxn + (1− βn)Tx]n − p∥2

≤ ∥βn(xn − p) + (1− βn)(Txn − p)∥2

= βn∥xn − p∥2 + (1− βn)∥Txn − p∥2 − βn(1− βn)∥Txn − xn∥2

≤ ∥xn − p∥2 − (1− βn)(βn − k)∥Txn − xn∥2

≤ ∥xn − p∥2.
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It follows that

∥xn+1 − p∥ = ∥[I − αn(µF − γf)]yn − p∥
≤ ∥(I − αnµF )yn − (I − αnµF )p∥+ αn∥γf(yn)− µFp∥
≤ (1− αnτ)∥yn − p∥+ αn(γ∥f(yn)− f(p)∥+ ∥γf(p)− µFp∥)
≤ [1− αn(τ − γα)]∥xn − p∥+ αn∥γf(p)− µFp∥.

By induction, we have

∥xn − p∥ ≤ max{∥x0 − p∥, ∥γf(p)− µF (p)∥
τ − γα

}, ∀n ≥ 0,

and {xn} is bounded, so is {yn}.
Next we show that ∥xn+1 − xn∥ → 0.
Consider a mapping Tn on K define by

Tnx = PK [βnx+ (1− βn)Tx], x ∈ K. (11)

It is easy to see that Tn is nonexpansive. Indeed, for all x, y ∈ K, we have

∥Tnx− Tny∥2 = ∥PK [βnx+ (1− βn)Tx]− PK [βny + (1− βn)Ty∥2

≤ ∥[βnx+ (1− βn)Tx]− [βny + (1− βn)Ty∥2

= βn∥x− y∥2 + (1− βn)∥Tx− Ty∥2

− βn(1− βn)∥(I − T )x− (I − T )y∥2

≤ βn∥x− y∥2 + (1− βn)[∥x− y∥2 + k∥(I − T )x− (I − T )y∥2]
− βn(1− βn)∥(I − T )x− (I − T )y∥2

≤ ∥x− y∥2,

which implies that Tn is nonexpansive. Since {xn} bounded, so {Tnxn} and
{FTnxn} are also bounded. For simplicity, we rewrite (3) by: xn+1 = [I −
αn(µF − γf)]Tnxn. It follows that

∥xn+2 − xn+1∥
= ∥[I − αn+1(µF − γf)]Tn+1xn+1

− [I − αn(µF − γf)]Tnxn∥
≤ ∥(I − αn+1µF )Tn+1xn+1 − (I − αn+1µF )Tnxn∥
+ |αn − αn+1|∥µFTnxn∥+ γ[αn+1∥f(Tn+1xn+1)

− f(Tnxn)∥+ |αn+1 − αn|∥f(Tnxn)∥]
≤ (1− αn+1τ)(∥xn+1 − xn∥+ ∥Tn+1xn − Tnxn∥)
+ |αn − αn+1|∥µFTnxn∥+ γ[αn+1α∥Tn+1xn+1 − Tnxn∥
+ |αn+1 − αn|∥f(Tnxn)∥].

(12)
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From (11), we have that

∥Tn+1xn − Tnxn∥
= ∥PK [βn+1xn + (1− βn+1)Txn]

− PK [βnxn + (1− βn)Txn]∥
≤ ∥[βn+1xn + (1− βn+1)Txn − [βnxn + (1− βn)Txn]∥
≤ |βn − βn+1|∥xn − Txn∥.

(13)

Applying (13) to (12), we deduce that

∥xn+2 − xn+1∥ ≤ [1− αn+1(τ − γα)]∥xn+1 − xn∥
+M(|αn+1 − αn|+ |βn+1 − βn|),

(14)

where M is an appropriate constant such that

M ≥ [1− αn+1(τ − γα)]∥xn − Txn∥+ γ∥f(Tnxn)∥+ µ∥FTnxn∥.

From (C1), (C3) and by Lemma 2.1, we have

∥xn+1 − xn∥ → 0. (15)

Next we show ∥xn − Txn∥ → 0.
From xn+1 = [I − αn(µF − γf)]Tnxn, we have

∥xn − Txn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − Txn∥
≤ ∥xn − xn+1∥+ αn∥(µF − γf)Tnxn∥.

By (C1) and (15), it shows that

∥xn − Txn∥ → 0. (16)

On the other hand, conditions (C2) and (C3) imply that βn → λ as n → ∞,
where λ ∈ [k, 1). Define a mapping S : K → H by Sx = λx+ (1− λ)Tx. Then,
by Lemma 2.2, S is nonexpansive mapping with F (S) = F (T ). It follows from
Lemma 2.4, that F (PKS) = F (S) = F (T ). We calculate that

∥PKSxn − xn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − PKSxn∥
≤ ∥xn − Tnxn∥+ ∥βnxn + (1− βn)Txn

− [λxn + (1− λ)Txn]∥
≤ ∥xn − Tnxn∥+ |βn − λ|∥xn − Txn∥.

From (16), we have

lim
n→∞

∥PKSxn − xn∥ = 0. (17)

For each t ∈ (0, 1), we consider a mapping Gt on K defined by

Gtx = [I − t(µF − γf)]PKSx.

Indeed, by Lemma 2.5, we have

∥Gtx−Gty∥ ≤ [1− t(τ − γα)]∥x− y∥,
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which implies that the mapping Gt is a contraction from K to K. Using the
Banach contraction principle, there exists a unique point, denoted by xt, which
uniquely solves the fixed point equation:x = [I − t(µF − γf)]PKSx.

Now, we show that

lim sup
n→∞

⟨γf(x̃)− µF x̃, xn − x̃⟩ ≤ 0,

where x̃ = limt→0+ xt, and xt is the fixed point of the contraction x 7→ [I −
t(µF − γf)]PKSx. Thus, by Lemma 2.5, it follows that

∥xt − xn∥2

= ∥(I − tµF )PKSxt − (I − tµF )xn + t(γf(PKSxt)− µFxn)∥2

≤ (1− tτ)2∥PKSxt − xn∥2 + 2t⟨γf(PKSxt)− µFxn, xt − xn⟩
≤ (1− tτ)2∥PKSxt − PKSxn + PKSxn − xn∥2

+ 2t⟨γf(PKSxt)− µFxn, xt − xn⟩
≤ (1− tτ)2[∥PKSxt − PKSxn∥2 + ∥PKSxn − xn∥2

+ 2∥PKSxt − PKSxn∥∥PKSxn − xn∥]
+ 2t⟨γf(PKSxt)− µFxn, xt − xn⟩

≤ (1− tτ)2∥xt − xn∥2 + pn(t) + 2t⟨µFxt − µFxn, xt − xn⟩
+ 2t⟨γf(PKSxt)− µFxt, xt − xn⟩,

(18)

where pn(t) = (1− tτ)2(2∥xt − xn∥+ ∥xn − PKSxn∥)∥xn − PKSxn∥, and from
(17), it follows that pn(t) → 0. From (18), and recall that F is η-strongly
monotone and also from the Theorem 3.1, we find that µη ≥ τ . Thus, we have

2t⟨µFxt − γf(PKSxt), xt − xn⟩ ≤ (t2τ2 − 2tτ)∥xt − xn∥2 + pn(t)

+ 2tµ⟨Fxt − Fxn, xt − xn⟩
≤ (t2τ − 2t)⟨µFxt − µFxn, xt − xn⟩+ pn(t)

+ 2tµ⟨Fxt − Fxn, xt − xn⟩
≤ t2τµ⟨Fxt − Fxn, xt − xn⟩+ pn(t).

It follows that

⟨µFxt − γf(PKSxt), xt − xn⟩ ≤
tτµ

2
⟨Fxt − Fxn, xt − xn⟩+

1

2t
pn(t). (19)

Let n → ∞, and recall that pn(t) → 0, we have

lim sup
n→∞

⟨µFxt − γf(PKSxt), xt − xn⟩ ≤
tτµκ

2
⟨Fxt − Fxn, xt − xn⟩, ∀t ∈ (0, 1).

Let t → 0, it follows that

lim sup
t→0

lim sup
n→∞

⟨µFxt − γf(PKSxt), xt − xn⟩ ≤ 0. (20)
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It is obvious that

⟨γf(x̃)− µF x̃, xn − x̃⟩
= ⟨γf(x̃)− µF x̃, xn − x̃⟩ − ⟨γf(x̃)− µF x̃, xn − xt⟩
+ ⟨γf(x̃)− µF x̃, xn − xt⟩ − ⟨γf(x̃)− µFxt, xn − xt⟩
+ ⟨γf(x̃)− µFxt, xn − xt⟩ − ⟨γf(PKSxt)− µFxt, xn − xt⟩
+ ⟨γf(PKSxt)− µFxt, xn − xt⟩

= ⟨γf(x̃)− µF x̃, xt − x̃⟩+ ⟨µFxt − µF x̃, xn − xt⟩
+ ⟨γf(x̃)− γf(PKSxt), xn − xt⟩+ ⟨γf(PKSxt)− µFxt, xn − xt⟩.

Let n → ∞, it follows that

lim sup
n→∞

⟨γf(x̃)− µF x̃, xn − x̃⟩ ≤ ∥γf(x̃)− µF x̃∥∥xt − x̃∥

+ µκ∥xt − x̃∥ lim
n→∞

∥xn − xt∥

+ γα∥PKSxt − x̃∥ lim
n→∞

∥xn − xt∥

+ lim sup
n→∞

⟨γf(PKSxt)− µFxt, xn − xt⟩,

therefore, let t → 0, and combined with (20), we get

lim sup
n→∞

⟨γf(x̃)− µF x̃, xn − x̃⟩

= lim sup
t→0

lim sup
n→∞

⟨γf(x̃)− µF x̃, xn − x̃⟩

≤ lim sup
t→0

∥γf(x̃)− µF x̃∥∥xt − x̃∥

+ lim sup
t→0

µκ∥xt − x̃∥ lim sup
n→∞

∥xn − xt∥

+ lim sup
t→0

γα∥PKSxt − x̃∥ lim
n→∞

∥xn − xt∥

+ lim sup
t→0

lim sup
n→∞

⟨γf(PKSxt)− µFxt, xn − xt⟩

≤ 0.

So, we conclude that lim supn→∞⟨γf(x̃)− µF x̃, xn − x̃⟩ ≤ 0.
Finally, we prove xn → x̃. To this end, we calculate

∥xn+1 − x̃∥2

= ∥αn(γf(yn)− µF (x̃)) + (I − αnµF )yn − (I − αnµF )x̃∥2

= ∥(I − αnµF )yn − (I − αnµF )x̃∥2 + 2αn⟨γf(yn)− µF (x̃), xn+1 − x̃⟩
≤ (1− αnτ)

2∥xn − x̃∥2 + 2αn⟨γf(yn)− γf(x̃) + γf(x̃)− µF (x̃), xn+1 − x̃⟩
≤ (1− αnτ)

2∥xn − x̃∥2 + 2αnγ⟨f(yn)− f(x̃), xn+1 − x̃⟩
+ 2αn⟨γf(x̃)− µF (x̃), xn+1 − x̃⟩

≤ (1− αnτ)
2∥xn − x̃∥2 + αnγα(∥xn − x̃∥2 + ∥xn+1 − x̃∥2)

+ 2αn⟨γf(x̃)− µF (x̃), xn+1 − x̃⟩.
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Since {xn} is bounded, we take a constant L > 0 such that L ≥ ∥xn − x̃∥2. In
fact, we have

∥xn+1 − x̃∥2

≤ (1− αnτ) + αnγα

1− αnγα
∥xn − x̃∥2 + 2αn

1− αnγα
⟨γf(x̃)− µF (x̃), xn+1 − x̃⟩

≤ [1− 2αn(τ − γα)

1− αnγα
]∥xn − x̃∥2

+
2αn(τ − γα)

1− αnγα
[

1

τ − γα
⟨γf(x̃)− µF (x̃), xn+1 − x̃⟩+ αnτ

2

2(τ − γα)
L]

= (1− ᾱn)∥xn − x̃∥2 + ᾱnβ̄n,

(21)

where

ᾱn =
2αn(τ − γα)

1− αnγα
,

β̄n =
1

τ − γα
⟨γf(x̃)− µF (x̃), xn+1 − x̃⟩+ αnτ

2

2(τ − γα)
L.

It is easily seen that limn→∞ ᾱn = 0,
∑∞

n=0 ᾱn = ∞, and lim supn→∞ β̄n ≤ 0.
By Lemma 2.1, we conclude that xn → x̃. �
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