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1. Introduction

Let H be a real Hilbert space, K be a nonempty closed convex subset of H.
T : K — H is a k-strictly pseudo contraction if there exists a constant k € [0,1)
such that

|Tz = Tyl < lle — yl? + k(I - Dye — ([~ Dyy|?, VayeK. (1)

Note that k-strictly pseudo contractions include nonexpansive mappings. That
is, T is nonexpansive if and only if T is O-strictly pseudo-contractive. It is
also said to be pseudo-contractive if k = 1. T is said to be strongly pseudo-
contractive if there exists a positive constant A € (0,1) such that T + Al is
pseudo-contractive. It is easy to see that k-strictly pseudo contractions are be-
tween nonexpansive mappings and pseudo contractions.

In 1953, W.R.Mann [1] introduced the standard Mann’s iterative algorithm
which generates a sequence {x,} by (2):

Voo € K, Zpt1 = (1 —ap)tn +anTe,, Yn >0, (2)

where the sequence {a,,} is in (0,1).
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Since then, construction algorithms to modify the standard Mann’s iterative
method for nonexpansive mappings and k-strict pseudo contractions have been
extensively studied by many authors.

It is clear that if T is a nonexpansive mapping with fixed point and the
sequence {a;,} is chosen so that o, € (0,1) and >, a,(1 — a,) = oo, then
the sequence {x,} generated by (2) converges weakly to a fixed point of 7. In
1967, Browder and Petryshyn [3] first extended the standard Mann’s method to
k-strictly pseudo-contractive self-mappings in real Hilbert spaces.

Since the sequence {x,} generated by the standard Mann’s iterative method
can only have weak convergence, modified Mann’s iterations have recently been
made to get strong convergence for nonexpansive mappings and k-strictly pseudo
contractions; see, e.g., [2, 4, 6, 8, 9] and references therein.

T.H.Kim and H.K.Xu [4] introduced the following process:

xg=x € K, arbitrarily chosen,
Yn = Bnn + (1 = Bn)Tn, (3)
Tpt1 = aptu+ (1 — ap)yn, Vn >0,

where T is a nonexpansive self-mapping of K, u € K is a given point. Under some

appropriate conditions on the control sequences {ay,} and {8,}, they obtained
a strong convergence theorem.

Remark 1.1. A.Moudfi [5] introduced the standard viscosity approximation
method for nonexpansive mappings. Let f be a contraction on H, starting with
an arbitrary initial g € H, define a sequence {x,} by:

Tnt1 = Anf(xn) + (1 — an)Ta,, Vn >0, (4)
where {a,} is a sequence in (0,1). It is proved that under certain appropriate
conditions on {a,}, the sequence {z,} generated by (4) converges strongly to
the unique solution x* € C of the variational inequality:

(I—=flz",z—a") >0, Vre Fiz(T),
where C = Fiz(T).
Yao et al.[6] modified the Mann’s iterative method by using the standard
viscosity approximation method:
o =x € K, arbitrarily chosen,
Yn = Bnmn + (1 - Bn)Txnv (5)
T4l = anf(mn) + (1 - an)yna Vn >0,
where T is a nonexpansive self-mapping of K, and f : K — K is a contraction.

Under some mild conditions on the parameters {c, } and {3, }, they proved that
the sequence {x,} defined by (5) converges strongly to a fixed point of T.

Remark 1.2. In 2006, G.Marino and H.K.Xu [7] proposed the following general
iterative method:

xo € H, znpy1= an')/f(wn) + (I - anA)Tl'n? Vn >0, (6)
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where T is a nonexpansive self-mapping of H, f : H — H is a contraction, and
A is a strongly positive bounded linear operator on H. Under some appropriate
conditions on {ay,}, they proved that the sequence {x,} defined by (6) con-
verges strongly to a fixed point x* of T, which equivalently solves the variational
inequality:

(vf—A)z,x—2) <0, Vae Fiz(T),
which is the optimality condition for the minimization problem:
1
ggg §<A£ZZ, ‘T> - h(x)7

where h is a potential function for v f(i.e.,h'(z) = vf(z) for x € H).

Zhou [8] also modified the Mann’s iterative process for non-self k-strict pseudo-
contractions, and obtained strong convergence in Hilbert spaces.

Very recently, X.L.Qin et al.[9] modified the Mann’s iterative method by using
the following composite iteration scheme:

1 =x € K, arbitrarily chosen,
Tnt+1 = Oéan(an) + (I - anA)y’m Vn > 1,
where T' : K — H is k-strictly pseudo contractive mapping, f : K — K is a
contraction, and A is a strongly positive bounded linear operator on K. Under
some mild conditions on the parameters {a,} and {3,}, they proved that the
sequence {x, } defined by (7) converges strongly to a fixed point of T
In this paper, motivated by Kim and Xu [4], Moudafi [5], Yao et al. [6],

G.Marino and Xu [7], Zhou [8], X.L.Qin et al.[9], we introduce a new composite
algorithm:

rg=2x € K,

Tnt1 = [[ = an(pF = vf)|yn, Yn = 0.
where T is a k-strictly pseudo contraction from K onto H, f is a self-contraction
on K such that || f(x)—f(y)]| < allz—y| for all z,y € K and F is a k-Lipschitzian
and n-strongly monotone operator on K. {a,} and {8,} are sequences in [0, 1].
Under some certain appropriate assumptions on {a,} and {8,}, We obtain

strong convergence theorems for the k-strictly pseudo contraction. Our results
improve and extend the corresponding results.

2. Preliminaries

Lemma 2.1 ([2]). Assume that {z,} is a sequence of nonnegative real numbers
such that

An+41 S (1 - ’Yn)an + ’ynéna vVn Z 0; (9)

where {7y} is a sequence € (0,1), and {0,} is a sequence in R such that
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(1) ZZO:1 Yn = O0; -
(i) limsup,_,oo 0, <0 or > |yndn| < co.

Then lim,, o a, = 0.

Lemma 2.2 ([3]). Let T : K — H be a k-strictly pseudo-contraction. Define
S:K— HbySr=XMx+(1—\NTx for allz € K. Then, as X € [k,1), S is a
nonezpansive mapping such that F(T) = F(S5).

Lemma 2.3 ([8]). If T is a k-strictly pseudo contraction on a closed convex
subset of K of a real Hilbert space H, then the fized point set F(T) is closed
convez so that the projection Pp(r) is well defined.

Lemma 2.4 ([8]). Let T : K — H be a k-strictly pseudo contraction with
F(T) # 0, then F(T) = F(PxT).

Lemma 2.5 ([10]). Let A be a number in [0,1] and p > 0. Let F': H — H be
a k-Lipschitzian continuous and n-strongly monotone operator with k > 0 and
n > 0. Associating with a nonexpansive mapping T on H, define a mapping

T> :H — H by T’z := Tz — \uF(Tz), for allx € H. Let 7 = ,u(n—“T”Q), thus
T> : H — H is a contraction, that is:| Tz — T y|| < (1 — A7) ||z — y||.

3. Main results

Theorem 3.1. Let H be a real Hilbert space, let K be a nonempty closed convex
subset of H such that K £ K C K. Assume that f : K — K is a contraction
with a coefficient 0 < a < 1. Let T : K — H be a non-self k-strictly pseudo
contraction such that F(T) # 0. Let F: K — K be a k-Lipschitzian continuous
and n-strongly monotone operator with k > 0 andn > 0. Let 0 < p < 2n/k? and
= <~ < p(n—pr?/2)/a = Z. Let the sequence {x,} generated by (1.3), where
the sequence {ay,} and {B,} are in [0,1] and satisfy the following conditions:

(C1) limy, oo, =0, D00y = 005

(C2) k< B <A<, limyyoo B = A for allm > 0;

(C3) Xonlolansr — an| < oo and 377 [Bnt1 — Bal < oo,
Then {x,} converges strongly to & € F(T), which also solves the variational
inequality:

(uF —~vf)Z,x—2) >0, Vae Fiz(T). (10)

Proof. First, we show that the sequences {z,} and {y,} are all bounded. Take
any p € F(T), we have

lyn = plI* = 1Pk [Bnwn + (1 = Ba) Tl — pl?
< NIBn(@n = p) + (1 = Bu)(Tan = p)|I?
= Bullzn = plI* + (1 = B) I Tzn — pl|* = Bu(1 = Bu) | Tn — x|
< [z, _pH2 — (1= Bn)(Bn — k)| T2y — an2
< llzn = pl*.



A general modified Mann’s algorithm for k-strictly pseudo contractions 617

It follows that

[T = an(pF —v)|yn — 2l

(I — anpuF)yn — (I — anpuF)pll + anllvf(yn) — nFp||

(1 = an?)|lyn = pll + an (Y1 f(yn) — FO)I + IV f(p) — wFpl)
(1 = an(T —y)]l|lzn — pll + anllv f(p) — nFpll.

21 —pll = |
|

ININ TN

By induction, we have

ol v/ (p) — nF (p)|l L Ve >0,

ln = pll < max{]|zo
T —ya
and {z,} is bounded, so is {y,}.
Next we show that ||2,11 — x| — 0.
Consider a mapping 7T;, on K define by
Tox = Pg[Bpz+ (1 — B,)Tx], x¢€K. (11)

It is easy to see that T;, is nonexpansive. Indeed, for all z,y € K, we have

1Tz — Tyl = |1 Px[Bazx + (1 = Ba)T] — Pr[Buy + (1 = Ba)Tyl1?
< [Bnz + (1 = Ba)T2] = [Bay + (1 = Ba)TylI?
= Bullz - y||2 + (1 =BTz — Ty”2
= Bu(1 = Bu)I(I = T)a — (I = T)y|?
< Ballz =yl + (1 = Ba)lllz = ylI* + k(I = Tz — (I = T)yl|’]
= Bn(1 =BT = T)z — (I - T)y||2
<l -yl

which implies that T,, is nonexpansive. Since {z,} bounded, so {T,,z,} and
{FT,z,} are also bounded. For simplicity, we rewrite (3) by: x,4y1 = [I —
o (WF — )| Thay. It follows that

[Zn+2 — Tntal
= Il = cngr (uF = v )| Tn1@n 41
— [ = an(pF = )Tz
<N = ans1pF) T 1Tng1 — (I — anp1 ) T ||
+lan — angi|[|pF Tzl + Y[on | f(Tng12n11) (12)
— [(Tazn)|| + [ans1 — anl|[ f(Tnzn) ]
< (I = anu1m)(|Tn1 = Tl + [T 170 — Tranll)
+ lan — ani||pFTozn|| + Y[ant1al| Tos12nt1 — Tozn |
+ a1 — ol || f(Ton)|l]-
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From (11), we have that
||Tn+1xn - Tnl'n”
= ”PK [Bn-‘rll'n + (1 - Bn-‘rl)Txn]
— Pr[Bnrn + (1 = Bn) T2,
S ||[ﬁn+1xn + (1 - Bn-‘rl)Txn - [ann + (1 - 6n)Txn]||
S |6n - 6n+1|”xn - Txn”
Applying (13) to (12), we deduce that
[znt2 = Tpta || < [1 = g1 (7 = ya)]|Tns1 — zn |
+ M(‘OénJrl - an| + |6n+1 - ﬂn|)a

where M is an appropriate constant such that

M > [1 = ani1 (T —y)]llwn — Tznll + | f(Town)l| + pl| F Tz,

From (C1), (C3) and by Lemma 2.1, we have
|€nt1 — znl| — 0.

Next we show ||z, — Tx,| — 0.
From 2,11 = [I — an(uF — vf)]| Ty, we have

[#n = Tanll < [[#n — Tpgr | + lTnt1 — T2al|
< zn — g1l + anll(wF =) Than].-
By (C1) and (15), it shows that

|z — Tx,| — 0.

(13)

(16)

On the other hand, conditions (C2) and (C3) imply that 8, — X as n — oo,
where A € [k, 1). Define a mapping S : K — H by Sz = Az + (1 — \)Tz. Then,
by Lemma 2.2, S is nonexpansive mapping with F(S) = F(T). It follows from

Lemma 2.4, that F'(PxS) = F(S) = F(T). We calculate that
1Pk Sty — xnll < ||Xn — Tnznll + | Then — P Sz, ||
< Nzn = Tozpll + |Bnwn + (1 = Bn)Tzn
— [Pazn + (1= )Tz,
< lzn — Tozall + 180 — Alllzn — Tza|.
From (16), we have
nh_)ngo |Pr Sy, — 2] = 0.
For each t € (0,1), we consider a mapping Gy on K defined by
Gix = [I —t(uF —vf)| Pk Sz.
Indeed, by Lemma 2.5, we have
|Gz — Guyll < [1 = t(r = ya)]llz =yl
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which implies that the mapping G; is a contraction from K to K. Using the
Banach contraction principle, there exists a unique point, denoted by x;, which

uniquely solves the fixed point equation:z = [I — t(uF — v f)|Px Sx.
Now, we show that

limsup(vf(Z) — pF'z,zn — ) <0,

n—oo

where & = lim;_,o+ 24, and x; is the fixed point of the contraction = — [I —
t(uF — vf)]|Pr Sz. Thus, by Lemma 2.5, it follows that

e — @l |?

|(I = tuF)Px Sz, — (I — tuF)x, + t(yf(PxSz,) — pFz,)|?
< (1 —t7)?||Px Sat — x0||* + 2t(yf(Pr Sx¢) — pFap, xr — )
<(1- t7)2||PKS:rt — P Sx,, + PxSx, — :Un||2
+ 2t(vf(PxSzt) — pFp, 2 — p) (18)
< (1 —t7)?[|| P Szt — P Swn|® + ||PxSan — 20|
+ 2||PxSzy — P Sy ||| Pr Stn — 0]
+ 2t{yf(PxSxi) — pFxy, xr — xp)

< (1=t zp — 2nl|? + pu(t) + 2t (uFay — pFa,, xp — x,)
+ 2t(vf(Pr Sry) — play, o — x0),

where p,(t) = (1 — t7)2(2||z; — 2|l + |20 — PxSxnl)||2n — P Sz, and from
(17), it follows that p,(t) — 0. From (18), and recall that F is n-strongly
monotone and also from the Theorem 3.1, we find that un > 7. Thus, we have

2t (uFxy — 7 f(PxSze), 20 — 20) < (#2717 = 2t7)||2¢ — 20 ||* + i (2)
+ 2tp(Fry — Fay,, 2 — )

< (21 = 2t)(uFay — pFan, xp — ) + po(t)
+ 2tp(Fry — Fa,, 2 — )

S t2T,U/<F.'I}t — an, Tt — xn> +pn(t)
It follows that

tT 1
<MF$Ut - ’Yf(PKSiEt)»ZUt - xn) < 7M<F$t —Fuy, v — $n> + 7pn(t)~ (19)

2t
Let n — oo, and recall that p,(t) — 0, we have

t
limsup(uFv; =7 (PicSz1), a0 = an) <~ (Fay = Fag,ae =), ¥ € (0,1).
n—oo

Let t — 0, it follows that

lim sup lim sup(uFz; — v f(PrSxt), xt — xn) < 0. (20)
t—0 n—00
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It is obvious that
Vf(%) — puFz, 2, — )
= (v (&) = pFz, 2y — T) — (Vf(Z) — pFZ, 2p — 1)
T) = pFE,xn —x) — (Vf(Z) — pF oy, an — a4)

+ (v /(
+ (Vf(@) — pFay, xn — 21) — (Vf(PrSwe) — pFay, xn — x4)
+ (vf(PxSxt) — pFxy, @y — )

= (vf(&) — pF#, 2y — ) + (uFxy — pFE, 20 — 24)

+ <’Yf<55) - ’Yf(PKS%),ﬂUn - xt) + <’Yf(PKS$t) — pFzy, , — $t>-

Let n — oo, it follows that
limsup(yf(Z) — pFz, 2, — 7) < |vf(Z) — pF2|[|z, — 2|
n—oo
+ pkllzy — 2| Um ||z, — 2|
n— o0
+ val|Px Sz, — Z|| lim ||@, — x|
n—o0

+ limsup(yf(PxSx:) — pF e, X — Tt),

n—oo
therefore, let t — 0, and combined with (20), we get

limsup(yf(Z) — pF'z, z, — &)
n— oo

= lim sup limsup(yf(Z) — uFz,x, — &)
t—0 n—00

< limsup [|7f(%) — pF |||z — |
t—0

+ lim sup pkl||z; — Z|| imsup ||, — x|
t—0 n—00

+ lim sup yo|| P Szy — Z|| Um ||a, — 24|
t—0 n—00

+ limsup lim sup(y f(Px Sxt) — pFxy, @, — )

t—0 n— 00

<0.

So, we conclude that limsup,, , . (vf(Z) — pFZ,z, — &) < 0.
Finally, we prove z,, — Z. To this end, we calculate

201 — &2
= llan(vf(yn) = pF (%) + (I = appF)yn — (I — anpF)E|?
= I(I = anpF)yn — (I = anpuF)E|” + 200 (7 f (yn) — pF(Z), 2py1 — )
< (1= an)?[len — &[° + 200 (v f (yn) = V[ (Z) + 7 [ (&) = pF (%), 2011 — F)
< (1= an)?[len — &[* + 2007 (f (yn) — f(&), 2pi1 — )
+ 200 (Vf(E) — pF(Z), Tns1 — F)
< (1= anr)?[len — &° + apya(an — Z* + |20 — 2]?)

+ 20, (vf(Z) — pF(Z), Tpny1 — ).
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Since {z,} is bounded, we take a constant L > 0 such that L > ||z, — Z||%. In
fact, we have

2741 — )2
(1 —an7) + apya - 20, - 5 -
< n = B+ ot (g f(F) — pF(E), Tngr —
< C T = o ot (V@) — pF (&) 2 )
200 (T — 70) -2
<l1l-— —
= =y Hen =2l (21)
20, (T —ya) . 1 - - - T
— ukF nil — — L
1_an,ya [T_,YOé(PYf(:L') 1% (LL’),SC +1 x>+2(7’—’}/04) ]
= (1= an)l|zn — 2|1 + cnfn,
where
o 2an(7— _/704)
"1l —apa
- 1 a,T?
w = ———(Vf(F) — pF(F), Tpp1 — F) + 5 L.
ﬁ T*’)/Oé<7f(x) o (l‘)l‘+1 x>+2(7’7’70&)
It is easily seen that lim,,_, ., a;, = 0, ZZO:O an = 00, and limsup,,_, ﬁ_n <0.
By Lemma 2.1, we conclude that z,, — Z. O
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