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TRAVELING WAVES OF AN SIRS EPIDEMIC MODEL WITH

SPATIAL DIFFUSION AND TIME DELAY†

YANKE DU∗, RUI XU

Abstract. This paper is concerned with an SIRS epidemic model with
spatial diffusion and time delay representing the length of the immunity
period. By using a new cross iteration scheme and Schauder’s fixed point
theorem, we reduce the existence of traveling wave solutions to the existence

of a pair of upper-lower solutions. By constructing a newfashioned pair of
upper-lower solutions, we derive the existence of a traveling wave solution
connecting the uninfected steady state and the infected steady state.
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1. Introduction

Mathematical models describing the population dynamics of infectious dis-
eases have played an important role in better understanding epidemiological
patterns and disease control for a long time. Let S(t) denote the number of
individuals who are susceptible to the disease, I(t) the number of infected in-
dividuals who are infectious and are able to spread the disease by contact with
susceptible individuals and R(t) the number of individuals who have been re-
moved from the possibility of infection through full immunity. In [12], Wen and
Yang considered the following delayed SIRS epidemic model

Ṡ(t) = A− µS(t)− βS(t)I(t) + γe−µτI(t− τ),

İ(t) = βS(t)I(t)− (µ+ γ + α)I(t),

Ṙ(t) = γI(t)− γe−µτI(t− τ)− µR(t),

(1)

where the parameters µ, α,A, β, γ are positive constants in which µ is the natu-
ral death rate of the population, α is the death rate of the infective individuals
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due to disease, A is the recruitment rate of the susceptible population, β is the
contact rate, and γ is the recovery rate from the infected compartment. The
term γe−µτI(t−τ) represents that an individual has survived natural death in a
recovery pool before becoming susceptible again, where τ ≥ 0 is a constant rep-
resenting the length of the immunity period. Sufficient conditions were derived
in [12] for the global stability of an endemic equilibrium by using a Lyapunov
functional approach.

We note that the spatial content of the environment has been ignored in (1).
However, due to the large mobility of people within a country or even worldwide,
spatially uniform models are not sufficient to give a realistic picture of a disease
diffusion. For this reason, the spatial effects cannot be neglected in studying
the spread of epidemics. In recent years, many investigators have introduced
population movements into related equations for epidemic modeling in efforts to
understand the most basic features of spatially distributed interactions (see, for
example, [3, 7, 9, 14]), and in this situation the governing equations for the pop-
ulation densities are described by a system of reaction-diffusion equations. For
nonlinear reaction-diffusion equations describing a variety of physical and biolog-
ical phenomena, traveling wave solutions are important since in many situations
they determine the long term behavior of other solutions, and account for phase
transitions between different states of physical systems, propagation of patterns,
and domain invasion of species in population biology. Since the pioneering work
of Schaaf [10], traveling wave solutions of delayed reaction-diffusion equations
have been widely investigated due to the significant applications in several ar-
eas (see, e.g., [5, 6, 8, 11, 13] and references therein). However, traveling wave
solutions of epidemic models have been rarely studied. Gan et al. [1] studied
the existence of traveling waves of a delayed SIRS epidemic model with reac-
tion terms satisfying the partial quasi-monotonicity conditions. By using a cross
iteration method, Schauder’s fixed point theorem and constructing a pair of
upper-lower solutions, the existence of a traveling wave solution were derived .

Motivated by the works of Wen and Yang [12] and Gan et al. [1], in the
present paper, we are concerned with the effect of spatial diffusion and time
delay due to immunity period on the dynamics of an SIRS epidemic model. To
this end, we consider the following delayed partial differential equations

∂S

∂t
= d1

∂2S

∂x2
+A− µS(x, t)− βS(x, t)I(x, t) + γe−µτI(x, t− τ),

∂I

∂t
= d2

∂2I

∂x2
+ βS(x, t)I(x, t)− (µ+ γ + α)I(x, t),

∂R

∂t
= d3

∂2R

∂x2
+ γI(x, t)− γe−µτI(x, t− τ)− µR(x, t),

(2)

where S(t, x), I(t, x) and R(t, x) represent the densities of the susceptible, the
infected and the removed at time t and location x, respectively. di (i = 1, 2, 3)
denote the corresponding diffusion rates for the three populations, respectively.
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Since the first two equations are independent of the last in (2), we need only
to consider the following subsystem

∂S

∂t
= d1

∂2S

∂x2
+A− µS(x, t)− βS(x, t)I(x, t) + γe−µτI(x, t− τ),

∂I

∂t
= d2

∂2I

∂x2
+ βS(x, t)I(x, t)− (µ+ γ + α)I(x, t).

(3)

The paper is organized as follows. Section 2 is devoted to some preliminaries
for traveling waves. In Section 3, we employ a new cross iteration method
and Schauder’s fixed point theorem in a profile set to obtain the existence of
traveling wave solutions for a generalized system with the nonlinear reaction
terms satisfying the mixed quasi-monotonicity. In Section 4, by constructing a
pair of upper-lower solutions, we use the result derived in Section 3 to prove the
existence of traveling wave solutions of system (2). We conclude this work in
Section 5.

2. Preliminaries

Throughout this paper, we employ the usual notations for the standard order-
ing in R2. That is, for u = (u1, u2) and v = (v1, v2), we denote u ≤ v if ui ≤ vi;
u < v if u ≤ v but u ̸= v; and u ≪ v if u ≤ v but ui ̸= vi, i = 1, 2. We use | · |
to denote the Euclidean norm and ∥ · ∥ the supremum norm in C([−τ, 0],R2).

In order to focus on the mathematical ideas and for the sake of simplicity, we
consider the following general reaction-diffusion system with discrete delays

∂S

∂t
= d1

∂2S

∂x2
+ f1(St(x), It(x)),

∂I

∂t
= d2

∂2I

∂x2
+ f2(St(x), It(x)),

(4)

where t ∈ R, x ∈ R, di > 0, fi: C([−τ, 0],R2) → R1 is continuous (i = 1, 2), and
for any fixed x ∈ R, St(x) ∈ C([−τ, 0],R1) is given by St(x)(s) = S(t + s, x),
s ∈ [−τ, 0], It(x) is defined accordingly.

A traveling wave solution of (4) is a special solution of the form S(x, t) =
ϕ(x+ ct), I(x, t) = φ(x+ ct), where (ϕ, φ) ∈ C2(R,R2) is the profile of the wave
that propagates through the one-dimensional spatial domain at a constant speed
c > 0. Substituting S(x, t) = ϕ(x+ ct), I(x, t) = φ(x+ ct) into (4) and denoting
x+ ct by t, we obtain the corresponding wave equations

d1ϕ
′′(t)− cϕ′(t) + fc1(ϕt, φt) = 0,

d2φ
′′(t)− cφ′(t) + fc2(ϕt, φt) = 0,

(5)

where ϕt(ζ) = ϕ(ζ + t), φt(ζ) = φ(ζ + t), and the functions fci : Xc =
C([−cτ, 0],R2) → R (i = 1, 2) are defined by

fci(ϕ, φ) = fi(ϕ
c, φc), ϕc(s) = ϕ(cs), φc(s) = φ(cs), s ∈ [−τ, 0].
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We call that (4) has a traveling wave solution if and only if for some c > 0, (5)
with the asymptotic boundary conditions

limt→−∞ ϕ(t) = ϕ−, limt→−∞ φ(t) = φ−,
limt→+∞ ϕ(t) = ϕ+, limt→+∞ φ(t) = φ+

has a solution on R2, where (ϕ−, φ−) and (ϕ+, φ+) are two equilibria of (5).
Without loss of generality, we can assume

(ϕ−, φ−) = (0, 0), (ϕ+, φ+) = (k1, k2). (6)

Corresponding to (4), we make the following assumptions throughout the re-
mainder of this paper:

(H1) fi(0, 0) = fi(k1, k2) = 0, i = 1, 2.
(H2) There exist constants Li > 0, such that
|fi(ϕ1, φ1)− fi(ϕ2, φ2)| ≤ Li ∥ Φ− Ψ ∥

for Φ(s) = (ϕ1, φ1)(s), Ψ(s) = (ϕ2, φ2)(s) ∈ C([−τ, 0],R2) with (0, 0) ≤ (ϕj(s),
φj(s)) ≤ (m1,m2), s ∈ [−τ, 0], mi > ki are positive constants, i, j = 1, 2.

(H3) The reaction terms satisfy the mixed quasi-monotonicity conditions, that
is, there exist constants β1, β2 > 0 such that

fc1(ϕ1, φ1(0), φ2(−τ))− fc1(ϕ2, φ2(0), φ1(−τ)) + β1[ϕ1(0)− ϕ2(0)] ≥ 0,
fc2(ϕ2, φ1)− fc2(ϕ1, φ2) + β2[φ1(0)− φ2(0)] ≥ 0

for Φ(s) = (ϕ1, φ1)(s), Ψ(s) = (ϕ2, φ2)(s) ∈ C([−τ, 0],R2) with 0 ≤ Ψ(s) ≤
Φ(s) ≤ (m1,m2), s ∈ [−τ, 0]. Here, we denote φ in fc1 by (φ(0), φ(−τ)), since
we treat them differently.

Now, we give the definition of upper and lower solutions of system (4).

Definition 1. The continuous functions Φ(t) = (ϕ, φ)(t) and Φ(t) = (ϕ, φ)(t)
are called an upper solution and a lower solution of system (5), respectively,
if there exist constants Ti (i = 1, 2, · · · ,m), such that Φ(t) and Φ(t) are twice
differential in R \ {Ti : i = 1, 2, · · · ,m} and they are essentially bounded on R2,
and there hold

d1ϕ
′′
(t)− cϕ

′
(t) + fc1(ϕt, φt(0), φt

(−τ)) ≤ 0

d2φ
′′(t)− cφ′(t) + fc2(ϕt

, φt) ≤ 0 t ∈ R \ {Ti : i = 1, 2, · · · ,m}

and

d1ϕ
′′(t)− cϕ′(t) + fc1(ϕt

, φ
t
(0), φt(−τ)) ≥ 0

d2φ
′′(t)− cφ′(t) + fc2(ϕt, φt

) ≥ 0 t ∈ R \ {Ti : i = 1, 2, · · · ,m}.

Here, in order to give a new-style cross iteration scheme in Section 3, the
definition of upper-lower solutions is different from those in the literature (see,
for example, [1, 2, 6, 8, 11]).

3. Existence of traveling waves of system (4)

In this section, we apply Schauder’s fixed point theorem to study the existence
of traveling wave solutions of system (4) connecting the uninfected steady state
and the infected steady state.
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In what follows, we assume that there exist an upper solution Φ(t) = (ϕ, φ)(t)
and a lower solution Φ(t) = (ϕ, φ)(t) of system (5) satisfying (P1)-(P3):

(P1) 0 ≤ Φ ≤ Φ ≤ M = (m1,m2);
(P2) limt→−∞ Φ(t) = 0, limt→∞ Φ(t) = limt→∞ Φ(t) = K = (k1, k2),

(P3) Φ
′
(t+) ≤ Φ

′
(t−), Φ′(t+) ≥ Φ′(t−), t ∈ R.

Let

C[0,M ](R,R2) = {Φ(t) = (ϕ, φ)(t) ∈ C(R,R2) : 0 ≤ Φ(t) ≤ M, t ∈ R}.
We seek for traveling wave solutions of system (4) in the following profile set:

Γ =
{
(ϕ, φ)(t) ∈ C[0,M ](R,R2) : (ϕ, φ)(t) ≤ (ϕ, φ)(t) ≤ (ϕ, φ)(t)

}
.

It is easy to show that Γ is non-empty. In fact, (ϕ, φ)(t) ∈ Γ by (P1).
For (ϕ, φ) ∈ C[0,M ](R,R2), and the constants βi > 0 (i = 1, 2) in (H3), define

H = (H1,H2) : C[0,M ](R,R2) → C(R,R2) by

H1(ϕ, φ)(t) = fc1(ϕt, φt) + β1ϕ(t),
H2(ϕ, φ)(t) = fc2(ϕt, φt) + β2φ(t).

Then system (5) can be rewritten as

d1ϕ
′′(t)− cϕ′(t)− β1ϕ(t) +H1(ϕ, φ)(t) = 0,

d2φ
′′(t)− cφ′(t)− β2φ(t) +H2(ϕ, φ)(t) = 0.

Define

λi1 =
c−

√
c2 + 4βidi
2di

, λi2 =
c+

√
c2 + 4βidi
2di

(i = 1, 2).

It is clear that

λi1 < 0 < λi2, diλ
2
ij − cλij − βi = 0 (i, j = 1, 2).

For (ϕ, φ) ∈ C[0,M ](R,R2), define F = (F1, F2) : C[0,M ](R,R2) → C(R,R2) by

Fi(ϕ, φ)(t) =
1

di(λi2 − λi1)

[∫ t

−∞
eλi1(t−s) +

∫ ∞

t

eλi2(t−s)

]
Hi(ϕ, φ)(s)ds

(i = 1, 2).

Then F is well defined such that

diFi(ϕ, φ)
′′(t)− cFi(ϕ, φ)

′(t)− βiFi(ϕ, φ)(t) +Hi(ϕ, φ)(t) = 0 (i = 1, 2).

Thus, a fixed point of F is a solution of (5), which is a traveling wave solution
of (4) connecting 0 = (0, 0) with K = (k1, k2) if it satisfies (6).

In the following, we introduce a topology in C(R,R2). Let 0 < µ < min{−λi1,
λi2, i = 1, 2} and equip C(R,R2) with the exponential decay norm defined by

|Φ|µ = sup
t∈R

e−µ|t||Φ(t)|R2 .

Define
Bµ(R,R2) = {Φ ∈ C(R,R2) : |Φ|µ < ∞}.

Then it is easy to check that (Bµ(R,R2), | · |µ) is a Banach space.
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By (H3), it is not difficult to verify that the operators H and F admit the
following properties.

Lemma 1. Assume that (H3) holds. Then

H1(ϕ2, φ2(0), φ1(−τ))(t) ≤ H1(ϕ1, φ1(0), φ2(−τ))(t),

H2(ϕ1, φ2)(t) ≤ H2(ϕ2, φ1)(t);

F1(ϕ2, φ2(0), φ1(−τ))(t) ≤ F1(ϕ1, φ1(0), φ2(−τ))(t),

F2(ϕ1, φ2)(t) ≤ F2(ϕ2, φ1)(t)

for Φ(s) = (ϕ1, φ1)(s), Ψ(s) = (ϕ2, φ2)(s) ∈ C([−τ, 0],R2) with 0 ≤ Ψ(s) ≤
Φ(s) ≤ (m1,m2), s ∈ [−τ, 0].

Lemma 2. Assume that (H2) holds. Then F = (F1, F2) is continuous with
respect to the norm | · |µ in Bµ(R,R2).

The proof of Lemma 2 is similar to those in Huang and Zou [2] and Li et al.
[4], we therefore omit it here.

Lemma 3. Assume that (H3) holds, then FΓ ⊂ Γ.
Proof. For any Φ = (ϕ, φ) ∈ Γ , by Lemma 1, we have that

F1(ϕ, φ(0), φ(−τ))(t) ≤ F1(ϕ, φ(0), φ(−τ))(t) ≤ F1(ϕ, φ(0), φ(−τ))(t),

F2(ϕ, φ)(t) ≤ F2(ϕ, φ)(t) ≤ F2(ϕ, φ)(t).

Now, we need only to prove that

ϕ ≤ F1(ϕ, φ(0), φ(−τ))(t) ≤ F1(ϕ, φ(0), φ(−τ))(t) ≤ ϕ,

φ ≤ F2(ϕ, φ)(t) ≤ F2(ϕ, φ)(t) ≤ φ.
(7)

Without loss of generality, we assume that ϕ(t) is continuously differentiable in
R \ {Ti : i = 1, 2, · · · ,m} with T1 < T2 < · · · < Tm. Denote T0 = −∞ and
Tm+1 = ∞. For t ∈ (Tk, Tk+1), 0 ≤ k ≤ m, according to the definitions of F
and the upper-lower solutions, we have

F1(ϕ, φ(0), φ(−τ))(t)

=
1

d1(λ12 − λ11)

[∫ t

−∞
eλ11(t−s) +

∫ ∞

t

eλ12(t−s)

]
H1(ϕ, φ(0), φ(−τ))(s)ds

≤ 1

d1(λ12 − λ11)

[∫ t

−∞
eλ11(t−s) +

∫ ∞

t

eλ12(t−s)

]
(β1ϕ+ cϕ

′ − d1ϕ
′′
)(s)ds

=ϕ(t) +
1

λ12 − λ11

 k∑
j=1

eλ11(t−Tj)(ϕ
′
(Tj+)− ϕ

′
(Tj−))

+

m∑
j=k+1

eλ12(t−Tj)(ϕ
′
(Tj+)− ϕ

′
(Tj−))


≤ϕ(t).
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Obviously, F1(ϕ, φ(0), φ(−τ))(t) ≤ ϕ(t) for all t ∈ R in view of the continuity of

F1(ϕ, φ(0), φ(−τ))(t) and ϕ(t). By a similar argument, we can prove that (7)
holds for t ∈ R. This completes the proof. �

Using a similar argument as those in Huang and Zou [2] and Li et al. [4], one
can obtain the following result.

Lemma 4. Assume that (H2) and (H3) hold. Then F : Γ → Γ is compact.
We now give the following main theorem.

Theorem 1. Assume that (H1)-(H3) hold, and assume further that system (5)
has an upper and a lower solution Φ(t) = (ϕ, φ)(t), Φ(t) = (ϕ, φ)(t) satisfying
(P1)-(P3). Then for any c > 0, system (4) has a traveling wave solution satis-
fying (6).
Proof. Based on Lemmas 2, 3 and 4, using Schauder’s fixed point theorem, we
know that there exists a fixed point (ϕ∗(t), φ∗(t)) ∈ Γ , which is a solution of (5).

Further, by (P2) and the inequality

0 ≤ (ϕ, φ) ≤ (ϕ∗, φ∗) ≤ (ϕ, φ) ≤ (m1,m2),

we see that

lim
t→−∞

(ϕ∗(t), φ∗(t)) = (0, 0), lim
t→∞

(ϕ∗(t), φ∗(t)) = (k1, k2).

Therefore, the fixed point (ϕ∗(t), φ∗(t)) satisfies the asymptotic boundary con-
dition (6). The proof is completed. �

4. Existence of traveling waves of system (2)

In this section, we establish the existence of traveling wave solutions for system
(2) using the result in Section 3.

It is easy to show that system (3) ((2)) always has a semi-trivial steady state
E0(λ/µ, 0) (E0(λ/µ, 0, 0)). If R0 = βA/[µ(µ+ γ + α)] > 1, system (3) ((2)) has
a unique positive steady state E∗(S∗, I∗) (E∗(S∗, I∗, R∗)), where S∗ = (µ+ γ+
α)/β, I∗ = [βA−µ(µ+γ+α)]/[β(µ+α+γ(1−e−µτ ))] (R∗ = γ(1−e−µτ )I∗/µ).

Letting d1 = d2 = D, and making a change of variables Ñ = A/µ− (S + I),

Ĩ = I, dropping the tildes, then system (3) is equivalent to the following system

∂N

∂t
= D

∂2N

∂x2
− µN(x, t)− γe−µτI(x, t− τ) + (γ + α)I(x, t),

∂I

∂t
= D

∂2I

∂x2
+ [A/µ− (µ+ γ + α)]I(x, t)− βN(x, t)I(x, t)− βI2(x, t).

(8)

It is easy to show that if R0 > 1, system (8) has two steady states (0, 0),
(k1, k2), where k1 = A/µ − S∗ − I∗, k2 = I∗. Translating by traveling wave
solution, we derive the corresponding wave system of (8) as follows

Dϕ′′(t)− cϕ′(t)− µϕ(t)− γe−µτφ(t− cτ) + (γ + α)φ(t) = 0,

Dφ′′(t)− cφ′(t) + [A/µ− (µ+ γ + α)− βφ(t)]φ(t)− βϕ(t)φ(t) = 0
(9)
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with the following asymptotic boundary conditions

lim
t→−∞

(ϕ(t), φ(t)) = (0, 0), lim
t→∞

(ϕ(t), φ(t)) = (k1, k2).

For (ϕ, φ)(t) ∈ C([−τ, 0],R2), denote fc = (fc1, fc2) by

fc1(ϕt, φt) = −µϕ(0)− γe−µτφ(−τ) + (γ + α)φ(0),

fc2(ϕt, φt) = [A/µ− (µ+ γ + α)− βφ(0)]φ(0)− βϕ(0)φ(0).

Obviously, fc satisfies (H1)−(H3).
Let l1, l2 satisfy

A

µ
− (γ + α+ µ) ≤ (γ + α)l2k2

l1k1
− µ < 2[

A

µ
− (γ + α+ µ)]. (10)

Denote A1 = 4D[ (γ+α)l2k2

l1k1
− µ], A2 = 4D[Aµ − (γ + α+ µ)]. Let

c > c∗ = max

{√
A1,

4A2 −A1

2

√
1

2(2A2 −A1)

}
, (11)

then we introduce the following positive numbers λi (1 ≤ i ≤ 4) satisfying

λ1,2 =
c∓

√
c2 −A1

2D
, λ3,4 =

c∓
√
c2 −A2

2D
. (12)

Noting that λ1 < min{λ2, 2λ3, λ4} by (10), (11) and (12), we can fix η1, η2 such
that

η1 ∈ (1,min{λ2

λ1
,
λ4

λ1
}), η2 ∈ (

λ1η1
λ3

,min{λ2

λ3
, 2}),

where η1 is sufficiently close to 1 such that λ1η1

λ3
< min{λ2

λ3
, 2}.

For constant q > 1, define

h1(t) = l1k1(e
λ1t − qeη1λ1t), h2(t) = l2k2(e

λ3t − qeη2λ3t).

It is easy to see that for t ∈ R, hi(t) is monotone increasing until it reach a
global maximum, and then monotone decreasing to −∞ (i = 1, 2).

For ai < ki (i = 1, 2), denote

t3 = max{t : h1(t) = a1}, t4 = max{t : h2(t) = a2}.

Since with the decreasing of a1(a2), t3(t4) is increasing, and for q sufficiently
large, ti < 0 (i = 3, 4), it is not difficult to verify that for given λ > 0, we can
make a1, a2 satisfy

(k1 − a1)e
λ(t3−t4) >

γ + α

µ
(k2 − a2), t4 < t4 + cτ ≤ t3 < 0. (13)

Then there exist εi > 0 (i = 3, 4) such that

k1 − ε3e
−λt3 = h1(t3) = a1, k2 − ε4e

−λt4 = h2(t4) = a2. (14)

We can deduce from (13) and (14) that µε3 > (γ + α)ε4.
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Suppose µ > γe−µτ . We can choose εi > 0 (i = 1, 2) such that

µε1 − (γ + α)ε2 − γe−µτε4 > 0,
ε2 − ε3 > 0,
µε3 − (γ + α)ε4 − γe−µτε2 > 0,
ε4 − ε1 > 0.

(15)

For the above constants and t1, t2 satisfying t3+cτ < t1 < min{0, t2}, define the
continuous functions Φ(t) = (ϕ1(t), φ1(t)) and Ψ(t) = (ϕ2(t), φ2(t)) as follows:

ϕ1(t) =

{
l1k1e

λ1t, t ≤ t1,
k1 + ε1e

−λt, t > t1,

φ1(t) =

{
l2k2e

λ4t, t ≤ t2,
k2 + ε2e

−λt, t > t2,

ϕ2(t) =

{
l1k1(e

λ1t − qeη1λ1t), t ≤ t3,
k1 − ε3e

−λt, t > t3,

φ2(t) =

{
l2k2(e

λ3t − qeη2λ3t), t ≤ t4,
k2 − ε4e

−λt, t > t4,

where λ > 0 is a constant to be chosen later. It is easy to know that m1 =
supt∈R ϕ1(t) > k1, m2 = supt∈R φ1(t) > k2, Φ(t) and Ψ(t) satisfy (P1), (P2) and
(P3).

Lemma 5. Φ(t) = (ϕ1(t), φ1(t)) is an upper solution of system (9).
Proof. Denote

p1(t) := Dϕ′′
1(t)− cϕ′

1(t)− µϕ1(t)− γe−µτφ2(t− cτ) + (γ + α)φ1(t),

p2(t) := Dφ′′
1(t)− cφ′

1(t) + [A/µ− (µ+ γ + α)− βφ1(t)]φ1(t)− βϕ2(t)φ1(t).

If t < t1, ϕ1(t) = l1k1e
λ1t. It follows that

p1(t) ≤ eλ1t[Dl1k1λ
2
1 − cl1k1λ1 − µl1k1 + (γ + α)l2k2] = 0.

If t1 < t < t2, ϕ1(t) = k1+ ε1e
−λt, φ1(t) = l2k2e

λ2t, φ2(t) = k2− ε4e
−λ(t−cτ).

We have that

p1(t) ≤ e−λt[Dε1λ
2 + cε1λ− µε1 + (γ + α)ε2e

−λ(t2−t) + γe−µτε4e
λcτ ].

For λ sufficiently small, (γ + α)ε2 + γe−µτε4 − µε1 < 0 indicates that p1(t) < 0
and there exists a λ∗

1 > 0 such that p1(t) < 0 for all λ ∈ (0, λ∗
1).

If t > t2, ϕ1(t) = k1 + ε1e
−λt, φ1(t) = k2 + ε2e

−λt, φ2(t) = k2 − ε4e
−λ(t−cτ).

We derive that

p1(t) = e−λt[Dε1λ
2 + cε1λ− µε1 + (γ + α)ε2 + γe−µτε4e

λcτ ].

For λ sufficiently small, (γ+α)ε2+γe−µτε4−µε1 < 0 can deduce that p1(t) < 0
and there exists a λ∗

2 > 0 such that p1(t) < 0 for all λ ∈ (0, λ∗
2).

If t < t2, φ1(t) = l2k2e
λ4t. It follows that

p2(t) ≤ l2k2e
λ4t[Dλ2

4 − cλ4 +A/µ− (µ+ γ + α)] = 0.
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If t > t2, φ1(t) = k2 + ε2e
−λt, ϕ2(t) = k1 − ε3e

−λt. We derive that

p2(t) = e−λt[Dε2λ
2 + cε2λ− β(ε2 − ε3)(k2 + ε2e

−λt)].

For λ sufficiently small, ε2 > ε3 indicates that p2(t) < 0 and there exists a λ∗
3 > 0

such that p2(t) < 0 for all λ ∈ (0, λ∗
3).

Clearly, for all λ ∈ (0,minj=1,2,3{λ∗
j}), pi(t) ≤ 0 (i = 1, 2). This completes

the proof.

Lemma 6. Ψ(t) = (ϕ2(t), φ2(t)) is a lower solution of system (9).
Proof. Denote

q1(t) := Dϕ′′
2(t)− cϕ′

2(t)− µϕ2(t)− γe−µτφ1(t− cτ) + (γ + α)φ2(t),

q2(t) := Dφ′′
2(t)− cφ′

2(t) + [A/µ− (µ+ γ + α)− βφ2(t)]φ2(t)− βϕ1(t)φ2(t).

If t < t4, ϕ2(t) = l1k1(e
λ1t − qeη1λ1t), φ1(t − cτ) = l2k2e

λ4(t−cτ), φ2(t) =
l2k2(e

λ3t − qeη2λ3t). We get

q1(t) ≥ −[Dl1k1(η1λ1)
2−cl1k1η1λ1+(γ+α)l2k2−µl1k1]qe

η1λ1t− l2k2γe
−µτeλ4t.

Choosing q sufficiently large such that

q > − l2k2γ

Dl1k1(η1λ1)2 − cl1k1η1λ1 + (γ + α)l2k2 − µl1k1
+ 1.

Thus, we have q1(t) ≥ 0.
If t4 < t < t3, ϕ2(t) = l1k1(e

λ1t − qeη1λ1t), φ1(t − cτ) = l2k2e
λ4(t−cτ),

φ2(t) = k2 − ε4e
−λt. By the case above, it is obvious that q1(t) ≥ 0 since

k2 − ε4e
−λt ≥ l2k2(e

λ3t − qeη2λ3t) for t4 < t < t3.
If t3 < t < t2, ϕ2(t) = k1 − ε3e

−λt, φ1(t − cτ) = l2k2e
λ4(t−cτ), φ2(t) =

k2 − ε4e
−λt. We have that

q1(t) ≥ e−λt[−Dε3λ
2 − cε3λ+ µε3 − (γ + α)ε4 − γe−µτε2].

For λ sufficiently small, µε3 − (γ + α)ε4 − γe−µτε2 > 0 indicates that q1(t) > 0
and there exists a λ∗

4 > 0 such that q1(t) > 0 for all λ ∈ (0, λ∗
4).

If t > t2, ϕ2(t) = k1−ε3e
−λt, φ1(t−cτ) = k2+ε2e

−λ(t−cτ), φ2(t) = k2−ε4e
−λt.

We derive that

q1(t) ≥ e−λt[−Dε3λ
2 − cε3λ+ µε3 − (γ + α)ε4 − γe−µτε2e

λcτ ].

For λ sufficiently small, we can deduce from µε3 − (γ+α)ε4 − γe−µτε2 > 0 that
q1(t) > 0 and there exists a λ∗

5 > 0 such that q1(t) > 0 for all λ ∈ (0, λ∗
5).

If t < t4, φ2(t) = l2k2(e
λ3t − qeη2λ3t), ϕ1(t) = l1k1e

λ1t. We get

q2(t) >− {Dl2k2(η2λ3)
2 − cl2k2η2λ3 + [A/µ− (µ+ γ + α)l2k2]}qeη2λ3t

− β(l2k2)
2e2λ3t − βl1k1l2k2e

(λ1+λ3)t.

Choosing q sufficiently large satisfying

q >
βl2k2(l1k1 + l2k2)

−[Dl2k2(η2λ3)2 − cl2k2η2λ3 + [A/µ− (µ+ γ + α)l2k2]
+ 1.

Hence, q2(t) > 0.
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If t4 < t < t1, φ2(t) = k2 − ε4e
−λt, ϕ1(t) = l1k1e

λ1t. We have

q2(t) ≥ e−λt[−Dε4λ
2 − cε4λ+ β(ε4 − ε1e

−λ(t1−t))(k2 − ε4e
−λt)]

≥ e−λt[−Dε4λ
2 − cε4λ+ β(ε4 − ε1)(k2 − ε4e

−λt)].

For λ sufficiently small, ε4 > ε1 implies that q2(t) > 0 and there exists a λ∗
6 > 0

such that q2(t) > 0 for all λ ∈ (0, λ∗
6).

If t > t1, φ2(t) = k2 − ε4e
−λt, ϕ1(t) = k1 + ε1e

−λt. It follows that

q2(t) = e−λt[−Dε4λ
2 − cε4λ+ β(ε4 − ε1)(k2 − ε4e

−λt)].

For λ sufficiently small and the λ∗
6 above, ε4 > ε1 guarantees that q2(t) > 0 for

all λ ∈ (0, λ∗
6).

Obviously, for all λ ∈ (0,minj=4,5,6{λ∗
j}), qi(t) ≥ 0 (i = 1, 2). The proof is

completed. �
Applying Lemmas 5, 6 and Theorem 1, we know that ifR0 > 1 and µ > γe−µτ ,

system (8) has a traveling wave solution with speed c > c∗ connecting the steady
states (0, 0) and (k1, k2). Accordingly, we have the following conclusion.

Theorem 2. Suppose R0 > 1 and µ > γe−µτ . For every c > c∗, system (2)
always has a traveling wave solution with speed c connecting the uninfected steady
state E0(A/µ, 0, 0) and the infected steady state E∗(S∗, I∗, R∗).

5. Concluding remark

In this paper, we have dealt with the existence of traveling wave solutions
for an SIRS epidemic model with spatial diffusion and time delay describing the
immunity period. The reaction terms satisfy the mixed quasi-monotonicity in
which the monotonicity of the variable with delay is different from that without
delay. By using the cross iteration scheme and Schauder’s fixed point theorem,
we reduced the existence of traveling wave solutions to the existence of a pair of
upper-lower solutions which are easy to construct in practice. By constructing
a new-style pair of upper-lower solutions, we derived the existence of a traveling
wave solution connecting the uninfected steady state E0 and the infected steady
state E∗.
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