DOI QR코드

DOI QR Code

A UNIFORM STRONG LAW OF LARGE NUMBERS FOR PARTIAL SUM PROCESSES OF FUZZY RANDOM SETS

  • Received : 2011.11.19
  • Accepted : 2012.01.20
  • Published : 2012.05.30

Abstract

In this paper, we consider fuzzy random sets as (measurable) mappings from a probability space into the set of fuzzy sets and prove a uniform strong law of large numbers for sequences of independent and identically distributed fuzzy random sets. Our results generalize those of Bass and Pyke(1984)and Jang and Kwon(1998).

References

  1. Z. Artstein and R. Vitale, A strong law of large numbers for random compact sets, Ann. Probab. 4, pp. 879-882 , 1975.
  2. R.J. Aumann Integrals of set valued functions, our. Math. Anal. Application. 12 pp. 1-12, 1965. https://doi.org/10.1016/0022-247X(65)90049-1
  3. R.F. Bass and R. Pyke A strong law of large numbers for partial sum processes indexed by sets, Ann. Probab. 12 pp. 268-271, 1984 https://doi.org/10.1214/aop/1176993390
  4. N. Cressie A strong limit theorem for random sets. Suppl. Adv. appl. Probab. 10, pp. 36-46, 1978. https://doi.org/10.2307/1427005
  5. F. Hiai and H. Umegaki Integrals, Conditional Expectations, and Martingales of Multivalued Functions, Jour. Multivariate Analysis, 7, pp. 149-182, 1977. https://doi.org/10.1016/0047-259X(77)90037-9
  6. L.C. Jang and J. S. Kwon, A uniform law of large numbers for partial sum processes of Banach space valued random sets , Statistics & Prbability Letters, 38, pp. 21-25, 1998. https://doi.org/10.1016/S0167-7152(97)00149-1
  7. E.P. Klement and M.L. Ralescu, Limit theorems for fuzzy random variables, Peoc. R. Soc. Lond. A 407, pp. 171-182, 19863. https://doi.org/10.1098/rspa.1986.0091
  8. R. Kruse, The strong law of large numbers for fuzzy random variables Inform. Sci. 28, pp. 233-241, 1982.
  9. M.L. Puri and D.A. Ralescu, Differentials of fuzzy function, Jour. of Math. Anal. Appl. 91, pp. 552-558, 1983. https://doi.org/10.1016/0022-247X(83)90169-5
  10. H. Kwakernaak, Fuzzy random variables: Definitions snd theorems Inform. Sci. 15, pp. 1-29, 197
  11. M.L. Puri and D.A. Ralescu, Strong law of large numbers for Banach space valued random sets, Jour Ann. Probab. 11, pp. 222-224, 1983. https://doi.org/10.1214/aop/1176993671
  12. H. Radstrom, An embedding theorem for spaces of convex sets, Jour Proc. Amer. Math. Soc. 3, pp. 165-169, 1952. https://doi.org/10.1090/S0002-9939-1952-0045938-2
  13. H. Robbins, On the measure of a random set, Ann. Math. Statist. 15, pp. 70-74, 1944. https://doi.org/10.1214/aoms/1177731315
  14. H. Robbins, On the measure of a random set, Ann. Math. Statist. 16, pp. 342-347, 1945. https://doi.org/10.1214/aoms/1177731060