DOI QR코드

DOI QR Code

Determination of Bioactive Compounds and Anti-cancer Effect from Extracts of Korean Cabbage and Cabbage

배추와 양배추 추출물의 생리활성 물질 및 암세포 증식 억제효과 분석

  • 황은선 (한경대학교 영양조리과학과) ;
  • 홍은영 ((주)CJ식품연구소) ;
  • 김건희 (덕성여자대학교 식품영양학과)
  • Received : 2012.03.05
  • Accepted : 2012.05.14
  • Published : 2012.06.30

Abstract

In this study, we determined total polyphenol content(TPC) and total flavonoid content(TFC) of extracts from Korean cabbage and cabbage using a spectrophotometric method as well as glucosinolates concentration by HPLC. TPCs of Korean cabbage and cabbage extracts were 308.48 ${\mu}g$ GAE/g dry weight and 344.75 ${\mu}g$ GAE/g dry weight, respectively. TFCs of Korean cabbage and cabbage extracts were 5.33 ${\mu}g$ QE/g dry weight and 5.95 ${\mu}g$ QE/g dry weight, respectively. We found six different glucosinolates, namely progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin in the Korean cabbage extract. In the cabbage extract, there was four glucosinolates, namely glucoraphanin, sinigrin, glucobrassicin and 4-methoxyglucobrassicin. We determined the cytotoxic effect of Korean cabbage and cabbage extracts in AGS human stomach cancer cells, HepG2 human hepatic cancer cells and LNCaP human prostate cancer cells by MTT assay. Dose-dependent relationships were found between the extract concentrations and cancer cell growth inhibition. The overall results support that both Korean cabbage and cabbage, the major vegetables in Korea, contain bioactive compounds such as polypheol, flavonoids as well as glucosinolates and they may play a positive role in cancer prevention.

본 연구에서는 배추와 양배추 에탄올 추출물의 총 폴리페놀 함량 및 총 플라보노이드 함량을 측정하고, glucosinolates 함량을 HPLC로 분석하였다. 또한, MTT assay를 통한 암세포 증식 억제 활성을 측정하였다. 배추와 양배추 에탄올 추출물의 항산화물질로 알려진 총 폴리페놀 함량은 각각 308.48 및 344.75 ${\mu}g$ GAE/g dry weight으로 나타났으며, 총 플라보노이드 함량은 각각 5.33 및 5.95 ${\mu}g$ QE/g dry weight으로 나타났다. 배추 추출물에서는 progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, 4-methoxyglucobrassicin의 총 6개 glucosinolates를 확인하였다. 양배추 추출물에서는 glucoraphanin, sinigrin, glucobrassicin 및 4-methoxyglucobrassicin의 총 4개 glucosinolates를 확인하였다. 배추와 양배추 에탄올 추출물이 AGS 인체 위암세포주, HepG2 인체 간암세포주, LNCaP 인체 전립선암 세포주 증식에 미치는 영향을 MTT assay를 통해 알아보았다. 배추와 양배추 추출물의 농도가 증가함에 따라 농도 의존적으로 암세포 증식 억제 효능이 증가하였다. 또한, 배추와 양배추 추출물을 암세포에 처리하고 배양하는 시간이 24시간에서 48시간으로 길어질수록 암세포 성장 억제 효능도 증가하였다. 배추와 양배추의 추출과정 중에 생성된 glucosinolate 가수분해 산물과 폴리페놀, 플라보노이드 등의 생리활성 물질들이 암세포 성장 억제에 직접적인 영향을 주었을 것으로 사료된다. 한국인들이 자주 섭취하고 있는 배추와 양배추에는 주요 생리활성 물질인 글루코시놀레이트뿐 아니라 폴리페놀, 플라보노이드가 함유되어 있으며, 이들 추출물들은 암세포 증식 억제 효능이 있음을 보여주었다.

Keywords

References

  1. Annema N, Heyworth JS, McNaughton SA, Iacopetta B, Fritschi L. 2011. Fruit and vegetable consumption and the risk of proximal colon, distal colon and rectal cancers in casecontrol study in Western Australia. J Am Diet Assoc 111: 1479-1490 https://doi.org/10.1016/j.jada.2011.07.008
  2. Cheigh HS, Park KY. 1994. Biochemical, microbiological, and nutritional aspects of kimchi(Korean fermented vegetable products). Crit Rev Food Sci Nutr 34:175-203 https://doi.org/10.1080/10408399409527656
  3. Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56:5-51 https://doi.org/10.1016/S0031-9422(00)00316-2
  4. Fenwick GR, Griffiths NM, Heaney RK. 1983. Bitterness in Brussels sprouts(Brassica oleracea L. var. gemmifera): the role of 126 glucosinolates and their breakdown products. J Sci Food Agric 34:73-80 https://doi.org/10.1002/jsfa.2740340111
  5. Getahun SM, Chung FL. 1999. Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol Biomarkers Prev 8:447-451
  6. Hong EY. 2010. Study on analysis of major glucosinolates and enzymatic hydrolysis products and their biological activity in Korean Chinese cabbage(Brassica campestris L. ssp. pekinensis). Ph.D. Thesis, Duksung Women's Univ. Seoul. Korea
  7. Hu R, Kim BR, Chen C, Hebbar V, Kong AN. 2003. The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells. Carcinogenesis 24:1361-1367 https://doi.org/10.1093/carcin/bgg092
  8. Hwang ES, Lee HJ. 2006. Allyl isothiocyanate and its Nacetylcysteine conjugate suppress metastasis via inhibition of invasion, migration and matrix metalloproteinase-2/-9 activities in SK-Hep1 human hepatoma cell. Exp Biol Med 231:421-430 https://doi.org/10.1177/153537020623100408
  9. Hwang ES, Lee HJ. 2010. Effects of phenylethyl isothiocyanate and its metabolite on cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Int J Food Sci Nutr 61:324-336 https://doi.org/10.3109/09637481003639092
  10. Hwang ES, Jeffery EH. 2003. Evaluation of urinary N-acetylcysteinyl allyl isothiocyanate as a biomarker for intake and bioactivity of Brussels sprouts. Food Chem Toxicol 41:1817-1825 https://doi.org/10.1016/S0278-6915(03)00235-7
  11. International Standard Organization. 1992. Rapeseed: determination of glucosinolates content-Part 1: Method using high performance liquid chromatography. ISO 9167-1: 1992(E), pp. 1-9, Geneva, Switzerland
  12. McNaughton SA, Marks GC. 2003. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90:687-697 https://doi.org/10.1079/BJN2003917
  13. Pellegrini N, Chiavaro E, Gardana C, Mazzeo T, Contino D, Gallo M, Riso P, Fogliano V, Porrini. 2008. Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. J Agric Food Chem 56:139-147 https://doi.org/10.1021/jf072304b
  14. Pullar JM, Thomson SJ, King MJ, Turnbull CI, Midwinter RG, Hampton MB. 2004. The chemopreventive agent phenethyl isothiocyanate sensitizes cells to Fas-mediated apoptosis. Carconogenesis 25:765-772
  15. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. 2007. Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Soc 66:69-81 https://doi.org/10.1017/S0029665107005319
  16. Smith TK, Mithen R, Johnson IT. 2003. Effects of brassica vegetable juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 24:491-495 https://doi.org/10.1093/carcin/24.3.491
  17. Talalay P. 1989. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv Enzyme Regul 28: 237-250 https://doi.org/10.1016/0065-2571(89)90074-5
  18. Tan XL, Shi M, Tang H, Han W, Spivack SD. 2010. Candidate dietary phytochemicals modulate expression of phase II enzymes GSTP1 and NQO1 in human lung cells. J Nutr 140:1404-1410 https://doi.org/10.3945/jn.110.121905
  19. Truong T, Baron-Dubourdieu D, Rougier Y, Guenel P. 2010. Role of dietary iodine and cruciferous vegetables in thyroid cancer: a countrywide case-control study in New Caledonia. Cancer Causes Control 21:1183-1192 https://doi.org/10.1007/s10552-010-9545-2
  20. van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA. 1999. Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Adv Exp Med Biol 472:159-168 https://doi.org/10.1007/978-1-4757-3230-6_14
  21. Zhang Y, Kensler TW, Cho C-G, Posner GH, Talalay P. 1994. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147-3150 https://doi.org/10.1073/pnas.91.8.3147

Cited by

  1. Comparison of Antioxidant and Anti-proliferative Activities of Perilla (Perilla frutescens Britton) and Sesame (Seasamum indicum L.) leaf extracts vol.29, pp.3, 2013, https://doi.org/10.9724/kfcs.2013.29.3.241
  2. Production of Enzymatic Hydrolysate Including Water-soluble Fiber from Hemicellulose Fraction of Chinese Cabbage Waste vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.6
  3. Effect of Developmental Stages on Glucosinolate Contents in Kale (Brassica oleracea var. acephala) vol.33, pp.2, 2015, https://doi.org/10.7235/hort.2015.14017
  4. Fermentation Properties and Increased Health Functionality of Kimchi by Kimchi Lactic Acid Bacteria Starters vol.42, pp.11, 2013, https://doi.org/10.3746/jkfn.2013.42.11.1717
  5. Content and Distribution of Flavanols, Flavonols and Flavanones on The Common Vegetables in Korea vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.205
  6. Inhibitory Effects of Spinach, Cabbage, and Onion Extracts on Growth of Cancer Cells vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.671
  7. Effects of Purple Kohlrabi (Brassica oleracea var. gongylodes) Flesh and Peel Ethanol Extracts on the Antioxidant Activity and Antiproliferation of Human Cancer Cells vol.26, pp.2, 2015, https://doi.org/10.7856/kjcls.2015.26.2.405
  8. Quality Characteristics of Cabbage Rice Nutritional Bars Made with Varying Ratios of Cabbage Powder vol.32, pp.4, 2016, https://doi.org/10.9724/kfcs.2016.32.4.441
  9. Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with drought-stress in autumn and spring seasons vol.42, pp.3, 2015, https://doi.org/10.7744/cnujas.2015.42.3.167
  10. LC-PDA/MS/MS Analysis of Glucosinolates in Dolsan Leaf Mustard Kimchi and Dolsan Leaf Mustard Pickles vol.31, pp.1, 2016, https://doi.org/10.7841/ksbbj.2016.31.1.1
  11. Inhibitory Effects of Cabbage Juice and Cabbage-Mixed Juice on the Growth of AGS Human Gastric Cancer Cells and on HCl-Ethanol Induced Gastritis in Rats vol.42, pp.5, 2013, https://doi.org/10.3746/jkfn.2013.42.5.682
  12. Construction of a Full-length cDNA Library from Cardamine manshurica Nakai and Characterization of EST Dataset vol.43, pp.1, 2012, https://doi.org/10.7744/kjoas.20160005
  13. 배추의 가공에 따른 glucosinolates 및 isothiocyanates 함량 변화 vol.24, pp.3, 2012, https://doi.org/10.11002/kjfp.2017.24.3.367
  14. 겨우살이 물추출물 첨가 김치의 A549 인체 폐암 세포 증식저해 효과 vol.27, pp.12, 2017, https://doi.org/10.5352/jls.2017.27.12.1507
  15. 유묘기 양배추류에서 메틸자스모네이트에 의한 글루코시놀레이트 함량 변화 및 전사체 발현 분석 vol.46, pp.3, 2019, https://doi.org/10.5010/jpb.2019.46.3.189
  16. Lactobacillus plantarum MKHA15와 Leuconostoc mesenteroides MKSR을 첨가한 발효 채소 주스의 특성 vol.25, pp.4, 2012, https://doi.org/10.14373/jkda.2019.25.4.281
  17. 양배추 분말을 첨가한 시폰케이크의 품질 특성 vol.33, pp.1, 2020, https://doi.org/10.9799/ksfan.2020.33.1.009
  18. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid xBrassicoraphanus vol.68, pp.47, 2012, https://doi.org/10.1021/acs.jafc.0c04897
  19. UPLC-MS/MS를 이용한 배추와 배추김치의 글루코시놀레이트 및 대사체 분석 vol.52, pp.6, 2012, https://doi.org/10.9721/kjfst.2020.52.6.587
  20. Development of a Gas Chromatography-Time-of-Flight Method for Detecting Glucosinolate Metabolites and Volatile Organic Compounds in Kimchi vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9978251