DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Ethyl Acetate Fraction from Cnidium officinale Makino on LPS-Stimulated RAW 264.7 and THP-1 Cells

  • Jeong, Jin-Boo (Medicinal Plant Resources Major, Andong National University) ;
  • Hong, Se-Chul (Medicinal Plant Resources Major, Andong National University) ;
  • Jeong, Hyung-Jin (Medicinal Plant Resources Major, Andong National University) ;
  • Koo, Jin-Suk (Medicinal Plant Resources Major, Andong National University)
  • Received : 2010.10.26
  • Accepted : 2011.10.28
  • Published : 2012.06.30

Abstract

This work aimed to elucidate the anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino with a cellular system of LPS-stimulated RAW 264.7 and THP-1 cells. Some key pro-inflammatory cytokines and mediators including NO, iNOS, $PGE_2$, COX-2, TNF-${\alpha}$, NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65 were studied by sandwich ELISA and western blot analysis. Ethyl acetate fraction could significantly inhibit the production of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 in LPS-stimulated cell than that of single LPS-stimulated. And ethyl acetate fraction suppresses the activation of NF-${\kappa}B$ p50 and NF-${\kappa}B$ p65. All the results showed that ethyl acetate fraction had a good anti-inflammatory effect on LPS-stimulated RAW264.7 and THP-1 cells. Taken together, the anti-inflammatory actions of ethyl acetate fraction from Cnidium officinale Makino might be due to the down-regulation of NO, $PGE_2$, TNF-${\alpha}$, iNOS and COX-2 via the suppression of NF-${\kappa}B$ activation.

Keywords

References

  1. Ahn, M.Y., K.S. Ryu, Y.W. Lee and Y.S. Kim. 2000. Cytotoxicity and L-amino acid oxidase activity of crude insect drugs. Arch. Pharm. Res. 23:477-481. https://doi.org/10.1007/BF02976576
  2. Andreakos, E., B. Foxwel and M. Feldmann. 2002. Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation? Immunol. Rev. 202:250-265.
  3. Banskota, A.H., Y. Tezuka, N.Y. Nguyen, S. Awale, T. Vobukawa and S. Kadota. 2003. DPPH radical scavenging and nitric oxide inhibitory activities of the constituents from the wood of Taxus yunnanensis. Planta Med. 69:500-505. https://doi.org/10.1055/s-2003-40641
  4. Bosca, L., M. Zeini, P.G. Traves and S. Hortelano. 2005. Nitric oxide and cell viability in inflammatory cells: a roll for NO in macrophage function and fate. Toxicology 208:249-258. https://doi.org/10.1016/j.tox.2004.11.035
  5. Buttery, L.D., T.J. Evans, D.R. Springall, A. Carpenter, J. Cohen and J.M. Polak. 1994. Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab. Invest. 71:755-764.
  6. Jeong, S.I., D.H. Kwak, S. Lee, Y.K. Choo, W.H. Woo, K.S. Keum, B.K. Choi and K.Y. Jung. 2005. Inhibitory effects of Cnidium offcinale Makino and Tabanus fulvus Meigan on the high glucose-induced proliferation of glomerular mesangial cells. Phytomedicine 12:648-655. https://doi.org/10.1016/j.phymed.2004.01.014
  7. Jung, H.W., U.K. Seo, J.H. Kim, K.L. Leem and Y.K. Park. 2009. Flower extracts of Panax notoginseng attenuates lipopolysaccharide- induced inflammatory response via blocking of NF-kB signaling in murine macrophages. J. Ethnopharmacol. 122:313-319. https://doi.org/10.1016/j.jep.2008.12.024
  8. Libby, P., P.M. Ridker and A. Maseri. 2002. Inflammation and atherosclerosis. Circulation 105: 1135-1143. https://doi.org/10.1161/hc0902.104353
  9. Lim, J.H., Y.M. Park, J.S. Kim, H.J. Jeong and E.W. Seo. 2011. Effect of Cnidium officinale extract on recovery capability of allergic contact-dermatitis in Rat. Korean J. Plant Res. 24:430-437 (in Korean). https://doi.org/10.7732/kjpr.2011.24.4.430
  10. Locksley, R.M., N. Killeen and M.J. Lenardo. 2001. "The TNF and TNF receptor superfamilies: integrating mammalian biology". Cell 104:487-501. https://doi.org/10.1016/S0092-8674(01)00237-9
  11. Menichini, F., F. Conforti, D. Rigano, C. Formisano, F. Piozzi and F. Senatore. 2009. Phytochemical compositon, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem. 115:679-686. https://doi.org/10.1016/j.foodchem.2008.12.067
  12. Moncada, S. 1999. Nitric oxide: discovery and impact on clinical medicine. Journal of the Royal Society of Medicine 92:164- 169. https://doi.org/10.1177/014107689909200402
  13. Nathan, C. 2002. Nitric oxide as a secretary product of mammalian cells. FASEB J. 6: 3051-3064.
  14. Pokharel, Y.R., Q.H. Liu, J.W. Oh, R. Woo and K.W. Kang. 2007. 4-Hydroxykobusin inhibits the induction of nitric oxide synthase by inhibiting NF-kB and AP-1 Activation. Biol. Pharm. Bull. 30:1097-1101. https://doi.org/10.1248/bpb.30.1097
  15. Rishton, G.M. 2008. Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am. J. Cardiol. 101:43D-49D.
  16. Rocca, B. and G.A. FitzGerald. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. Int. Immunopharmacol. 2:603-630. https://doi.org/10.1016/S1567-5769(01)00204-1
  17. Sim, J.S., J.B. Jeong, J.H. Lee, T.H. Kwon, Y.J. Cha and H.J. Jeong. 2010. Inhibitory effect of the phenolic compounds from apples against oxidative damage and inflammation. Korean J. Plant Res. 23:487-497.
  18. Turini, M.E. and R.N. DuBois. 2002. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med. 53:35-57. https://doi.org/10.1146/annurev.med.53.082901.103952
  19. Yang, C.W., W.L. Chen, P.L. Wu, H.Y. Tseng and S.J. Lee. 2006. Anti-Inflammatory mechanisms of phenanthroindolizidine alkaloids. Mol. Pharmacol. 69:749-758.
  20. Yin, H., F. Zhang, M. Yu, H. Cheng, J. Lin, Y. Gao, B. Han and L. Zhu. 2005. Beta-endorphin ameliorates synovial cell hyperfunction in the collagen-induced arthritis rat model by specific downregulation of NF-kappa B activity. Neuroendocrinology 81:10-18. https://doi.org/10.1159/000084828
  21. Yoon, W.J., Y.M. Ham, B.S. Yoo, J.Y. Moon, J.S. Koh and C.G. Hyun. 2009. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin $E_{2}$, and proinflammatory cytokines in RAW264.7 macrophages. J. Biosci. Bioeng. 107:429-438. https://doi.org/10.1016/j.jbiosc.2008.11.018
  22. Yoshimura, A. 2006. Signal transduction of inflammatory cytokines and tumor development. Cancer Sci. 97:439-447. https://doi.org/10.1111/j.1349-7006.2006.00197.x
  23. Zhao, F., L. Wang and K. Liu. 2009. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J. Ethnopharmacol. 122:457-462 https://doi.org/10.1016/j.jep.2009.01.038

Cited by

  1. Anti-inflammatory Effect of Castanopsis cuspidata Extracts in Murine Macrophage RAW 264.7 Cells vol.27, pp.5, 2014, https://doi.org/10.7732/kjpr.2014.27.5.439
  2. Comparative Study of Litsea japonica Leaf and Fruit Extract on the Anti-inflammatory Effects vol.28, pp.2, 2015, https://doi.org/10.7732/kjpr.2015.28.2.145
  3. Immuno-Modulatory Activities of Polysaccharides separated from Chrysanthemum zawadskii var. latilobum in Macrophage Cells vol.29, pp.3, 2016, https://doi.org/10.9799/ksfan.2016.29.3.431
  4. Anti-Inflammatory Effect of Grateloupia imbricata Holmes Ethanol Extract on LPS-Induced RAW 264.7 Cells vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.181
  5. Effects of the Cnidium Officinale Makino Water Extract on the Lipid Metabolism of Rats Fed a Hypercholesterol Diet vol.26, pp.2, 2015, https://doi.org/10.7856/kjcls.2015.26.2.351
  6. Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells vol.30, pp.6, 2015, https://doi.org/10.7841/ksbbj.2015.30.6.326
  7. -Ligustilide, in the Water Extract of Cnidium Rhizome from Different Geographical Regions and Species Using HPLC-UVD Analysis vol.39, pp.6, 2018, https://doi.org/10.1002/bkcs.11471
  8. LPS로 유도된 RAW 264.7 cell로부터 NF-κB 조절 억제와 마우스 모델을 통한 큰잎모자반 에탄올 추출물의 항염증 효과 vol.43, pp.2, 2012, https://doi.org/10.4014/mbl.1504.04008
  9. 수박 덩굴 추출물 유래 미백 및 항염 활성 성분 vol.43, pp.1, 2012, https://doi.org/10.15230/scsk.2017.43.1.53
  10. LPS로 염증유도된 RAW 264.74 세포에 대한 흑삼 첨가 경옥고의 항염증 효과 vol.32, pp.3, 2012, https://doi.org/10.6116/kjh.2017.32.3.19
  11. Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과 vol.27, pp.11, 2012, https://doi.org/10.5352/jls.2017.27.11.1315
  12. LPS로 유도한 Raw 264.7 세포에서 A.C.C. 추출물의 항염증 효과 vol.18, pp.12, 2012, https://doi.org/10.5762/kais.2017.18.12.503
  13. Anti-inflammatory and immune-enhancing effects of enzyme-treated royal jelly vol.61, pp.2, 2012, https://doi.org/10.1007/s13765-018-0349-5
  14. 자화지정 추출물이 LPS로 유발된 대식세포의 염증인자에 미치는 영향 vol.16, pp.7, 2012, https://doi.org/10.14400/jdc.2018.16.7.309
  15. 효소 처리에 의한 흑미 호분 추출물의 산화방지와 항염증 활성 증진 vol.50, pp.5, 2012, https://doi.org/10.9721/kjfst.2018.50.5.528
  16. Antioxidant and anti‐inflammatory effects of Lilium lancifolium bulbs extract vol.44, pp.5, 2012, https://doi.org/10.1111/jfbc.13176
  17. LPS로 유도된 대식세포에 대한 와송 핵산추출물의 AP-1과 IRF3 전사인자의 억제에 의한 전염증성 사이토카인의 감소 효과 vol.48, pp.3, 2012, https://doi.org/10.4014/mbl.2002.02018
  18. The Anti-Inflammatory Effect from Lipopolysaccharide-Stimulated RAW 264.7 of Extracts of Hydrangea serrata Seringe vol.50, pp.3, 2012, https://doi.org/10.3746/jkfn.2021.50.3.236
  19. Anti-Inflammatory Effects of 6,7-Dihydroxy-4-Methylcoumarin on LPS-Stimulated Macrophage Phosphorylation in MAPK Signaling Pathways vol.16, pp.5, 2012, https://doi.org/10.1177/1934578x211020970
  20. Nutritional Value and Anti-inflammation Activity of Misutkaru with Added Gryllus bimaculatus Powder vol.19, pp.3, 2021, https://doi.org/10.20402/ajbc.2021.0203