DOI QR코드

DOI QR Code

Community characteristics of early biofilms formed on water distribution pipe materials

수도관 재질에 형성된 초기 생물막 형성 미생물의 군집 특성

  • 김영관 (강원대학교 환경공학과) ;
  • 박성구 (한림대학교 환경생명공학과) ;
  • 이동훈 (충북대학교 미생물학과) ;
  • 최성찬 (한림대학교 환경생명공학과)
  • Received : 2012.09.21
  • Accepted : 2012.11.12
  • Published : 2012.12.15

Abstract

Annular Biofilm Reactor (ABR) equipped with coupons of three different pipe materials (STS 304, PVC, PE) was used to generate drinking water biofilm samples. The level of assimilable organic carbon (AOC) during the sample generation period was $37.3{\mu}g/L$, and this level did not seem to be low enough to limit the formation of biofilm in this study. Terminal-restriction fragment length polymorphism (T-RFLP) analyses determined T-RF profile as early as 3 h of exposure on PVC coupons. Average surface roughness ($R_a$) measured by atomic force microscopic analyses was 125.7 nm for PVC, and this value was higher than for STS (71.6 nm) and PE (74.0 nm). However, biofilm formation was faster on STS (6 h) than on PE (12 h), which indicated that surface roughness might not be the only factor that controlled the initiation of biofilm development. Upon detection of the T-RF peaks, richness (S) and diversity indices such as Shannon (H) and Simpson (1/D) demonstrated a rather slow increase until 48 h followed by rapid increase regardless of the pipe materials. Differences of microbial community structures among the biofilm samples were determined based on the cluster analysis using Jaccard coefficients (Sj). Biofilm communities could be divided into two distinct groups according to the exposure time regardless of the pipe materials. First group contained a young (< 48 h) biofilm samples (10 out of 11) but second group contained a mature (${\geq}$ 48 h) samples (11 out of 14). Results suggested that, due to the complexity of biofilm, the targeting of the first group of cluster was crucial for optimizing the management of drinking water distribution systems and controlling microbial growth.

Keywords

References

  1. American Public Health Association (2005) Standard Methods for the Examination of Water and Wastewater. 21st Ed. APHA, Washington DC.
  2. Armon, R., Starosvetzky, J., Arbel, T., and Green, M. (1997) Survival of Legionella pneumophila and Salmonella typhimurium in biofilm systems. Wat. Sci. Technol., 35(11), pp. 293-300. https://doi.org/10.1016/S0273-1223(97)88227-3
  3. Bachmann, R.T. and Edyvean, R.G.J. (2006) AFM study of the colonisation of stainless steel by Aquabacterium commune. Int. Biodeter. Biodegrad., 58, pp. 112-118. https://doi.org/10.1016/j.ibiod.2006.06.008
  4. Chu, C. , Lu, C., and Lee, C. (2005) Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J. Environ. Manage., 74, pp. 255-263. https://doi.org/10.1016/j.jenvman.2004.09.007
  5. Deines, P., Sekar, R., Husband, P.S., Boxall, J.B., Osborn, A.M., and Biggs, C.A. (2010) A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems. Appl. Microbiol. Biotechnol., 87, pp. 749-756. https://doi.org/10.1007/s00253-010-2510-x
  6. Eboigbodin, K.E., Seth, A., and Biggs, C.A. (2008) A review of biofilms in domestic plumbing. J. AWWA, 100, pp. 131-138.
  7. Eichler, S., Christen, R., Holtje, C., Westphal, P., Botel, J., Brettar, I., Mehling, A., and Hofle, G. (2006) Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl. Environ. Microbiol., 72, pp. 1858-1872. https://doi.org/10.1128/AEM.72.3.1858-1872.2006
  8. Gjaltema, A., Arts, P.A.M., van Loosdrecht, M.C.M., Kuenen, J.G., and Heijnen, J.J. (1994) Heterogeneity of biofilms in rotating annular reactors: occurrence, structure, and consequences. Biotech. Bioeng., 44, pp. 194-204. https://doi.org/10.1002/bit.260440208
  9. Hallam, N.B., West, J.R., Forster, C.F., and Simms, J. (2001) The potential for biofilm growth in water distribution systems. Wat. Res., 35, pp. 4063-4071. https://doi.org/10.1016/S0043-1354(01)00248-2
  10. Janzon, A., Sjoling, A., Lothigius, A., Ahmed, D., Qadri, F., and Svennerholm, A.-M. (2009) Failure to detect Helicobacter pylori DNA in drinking and environmental water in Dhaka, Bangladesh, using highly sensitive real-time PCR assays. Appl. Environ. Microbiol., 75, pp. 3039-3044. https://doi.org/10.1128/AEM.02779-08
  11. Jefferson, K.K. (2004) What drives bacteria to produce a biofilm? FEMS Microbiol. Lett., 236(2), pp. 163-173. https://doi.org/10.1111/j.1574-6968.2004.tb09643.x
  12. Keinanen, M.M., Korhonen, L.K., Lehtola, M.J., Miettinen, I.T., Martikainen, P.J., Vartiainen, T., and Suutari, M.H. (2002) The microbial community structure of drinking water biofilms can be affected by phosphorus availability. Appl. Environ. Microbiol., 68, pp. 434-439. https://doi.org/10.1128/AEM.68.1.434-439.2002
  13. Krasner, S.W., Croue, J.P., Buffle, J., and Perdue, E.M. (1996) Three approaches for characterizing NOM. J. AWWA, 88(6), pp. 66-79.
  14. Lee, J. -W., Nam, J.-H., Kim, Y.-H., Lee, K.-H., and Lee, D.-H. (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol., 46, pp. 174-182. https://doi.org/10.1007/s12275-008-0032-3
  15. Lee, D. -G. and Kim, S.-J. (2003) Bacterial species in biofilm cultivated from the end of the Seoul water distribution system. J. Appl. Microbiol., 95, pp. 317-324. https://doi.org/10.1046/j.1365-2672.2003.01978.x
  16. Lehtola, M.J., Miettinen, I.T., Vartiainen, T., Myllykangas, T., and Martikainen, P.J. (2001) Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water. Wat. Res., 35, pp. 1635-1640. https://doi.org/10.1016/S0043-1354(00)00449-8
  17. Lehtola, M.J., Nissinen, T.K., Miettinen, I.T., Martikainen, P.J., and Vartiainen, T. (2004) Removal of soft deposits from the distribution system improves the drinking water quality. Wat. Res., 38, pp. 601-610. https://doi.org/10.1016/j.watres.2003.10.054
  18. Liu, W. T., Marsh, T.L., Cheng, H., and Forney, L.J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63, pp. 4516-4522.
  19. Martiny, A.C., $J{\phi}rgensen$, T.M., Albrechtsen, H.-J., Arvin, E., and Molin, S. (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl. Environ. Microbiol., 69, pp. 6899-6907. https://doi.org/10.1128/AEM.69.11.6899-6907.2003
  20. Miettinen, I.T., Vartiainen, T., and Martikainen, P.J. (1997) Phosphorus and bacterial growth in drinking water. Appl. Environ. Microbiol., 63, pp. 3242-3245.
  21. O'Toole, G., Kaplan, H.B., and Kolter, R. (2000) Biofilm formation as microbial development. Ann. Rev. Microbiol., 54, pp. 49-79. https://doi.org/10.1146/annurev.micro.54.1.49
  22. Percival, S.L., Walker, J.T., and Hunter, P.R. (2000) Microbiological Aspects of Biofilms and Drinking Water. CRC Press, Boca Raton, FL.
  23. Rochelle, P.A., Fry, J.C., Parkes, R.J., and Weightman, A.J. (1992) DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett., 79, pp. 59-65.
  24. Sartory, D.P. (2004) Heterotrophic plate count monitoring of treated drinking water in the UK: a useful operational tool. Int. J. Food Microbiol., 92, pp. 297-306. https://doi.org/10.1016/j.ijfoodmicro.2003.08.006
  25. Sathasivan, A. and Ohgaki, S. (1999) Application of new bacterial regrowth potential method for water distribution system- a clear evidence of phosphorus limitation. Wat. Res., 33, pp. 137-144. https://doi.org/10.1016/S0043-1354(98)00158-4
  26. Stach, J .E.M., Maldonado, L.A., Masson, D.G., Ward, A.C., Goodfellow, M., and Bull, A.T. (2003) Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl. Environ. Microbiol., 69, pp. 6189-6200. https://doi.org/10.1128/AEM.69.10.6189-6200.2003
  27. Szewzyk, U., Szewzyk, R., Manz, W., and Schleifer, K.-H. (2000) Microbiological safety of drinking water. Ann. Rev. Microbiol., 54, pp. 81-127. https://doi.org/10.1146/annurev.micro.54.1.81
  28. van der Kooij, D. (1992) Assimilable organic carbon as an indicator of bacterial regrowth. J. AWWA, 84(2), pp. 57-65. https://doi.org/10.1002/j.1551-8833.1992.tb07305.x
  29. van der Kooij, D., Visser, A., and Hijnen, W.A.M. (1982) Determining the concentration of easily assimilable organic carbon in drinking water. J. AWWA, 74(10), pp. 540-545. https://doi.org/10.1002/j.1551-8833.1982.tb05000.x
  30. White, C., Tancos, M., and Lytle, D.A. (2011) Microbial community profile of a lead service line removed from a drinking water distribution system. Appl. Environ. Microbiol., 77, pp. 5557-5561. https://doi.org/10.1128/AEM.02446-10
  31. Wingender, J. and Flemming H.-C. (2004) Contamination potential of drinking water distribution network biofilms. Wat. Sci. Technol., 49(11), pp. 277-286.
  32. Zacheus, O.M., Iivanainen, E.K., Nissinen, T.K., Lehtola, M.J., and Martikainen, P.J. (2000) Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Wat. Res., 34, pp. 63-70. https://doi.org/10.1016/S0043-1354(99)00113-X