DOI QR코드

DOI QR Code

Corrosion Behavior of AZ31 Magnesium Alloy during Machining

AZ31 마그네슘 합금의 절삭가공과정에서의 부식거동

  • Received : 2012.02.09
  • Accepted : 2012.04.20
  • Published : 2012.06.05

Abstract

In the study, corrosion characteristics of AZ31 magnesium alloy under various environments exposed during machining(immersion in cutting oil, 5 % cutting oil aqueous solution and distilled water & contact with dissimilar metals, SPC4 and A5052-H32) were investigated. A corrosion test was performed AZ31 magnesium alloy was immersed in each electrolyte solution after contacting with each dissimilar metals, and the results were observed by an electron microscope. In immersion tests, corrosion of AZ31 magnesium alloy showed to be in the sequence of distilled water> 5 % cutting oil aqueous solution> cutting oil> air, and in the test of contact with dissimilar metals, corrosion showed to be in the sequence of SPC4> A5052-H32> AZ31. It can be concluded that to prevent corrosion during machining, AZ31 magnesium alloy must prevent contacting water and use magnesium alloy for raw material of Jig & Fixture.

Keywords

References

  1. E. F. Emley, "Principles of Magnesium Technology", Pergamon Press, London 1966.
  2. D. G. Lee, Composite Materials Mechanics and Forming, Seongandang, 1993.
  3. "Magnesium and Magnesium Alloys", ASM Specialty Handbook, pp. 3-11, 1999.
  4. Y. Kozima, "Handbook Advanced Magnesium Technology", The Japan Magnesium Asso, pp. 55-70, 2000.
  5. H. I. Kaplan, Proc. 59th Int. Magnesium Asso, pp. 1-6, 2000.
  6. N. Pebere, C. Riera, F. Dabosi, Electrochemical Acta., Vol. 35, pp. 555-561. 1990. https://doi.org/10.1016/0013-4686(90)87043-2
  7. Egil Gulbrandsen, Johan Tafto, Arne Olsen, Corrosion Science, 34, pp. 1423-1440, 1993. https://doi.org/10.1016/0010-938X(93)90238-C
  8. O. Lunder, J. E. Lein, S. M. Hesjevik, T. Kr. Aune, Nisancioglu, Corrosion, Vol. 45, pp. 741-748, 1989. https://doi.org/10.5006/1.3585029
  9. C. D. Lee, C. S. Kang, K. S. Shin, J. Kor. Inst. Met. & Mater. Vol. 39, p. 78, 2001.
  10. J. J. Jeon, S. W. Lee, B. H. Kim, B. G. Park, Y. H. Park, and I. K. Park, J. Kor. Inst. Met. & Mater., Vol. 46, p. 304, 2008.
  11. N. J. Park, J. H. Hwang, and J. S. Roh, J. Kor. Inst. Met. & Mater., Vol. 47, p. 1, 2009.
  12. E. Aghion, B. Bronfin, and D. Elezer, J. Mater. Process. Tech., Vol. 117, p. 381, 2001. https://doi.org/10.1016/S0924-0136(01)00779-8
  13. J. E. Gray and B. Luan, J. Alloys Compd., Vol. 336, p. 88, 2002. https://doi.org/10.1016/S0925-8388(01)01899-0
  14. G. T. Bae, J. H. Bae, D. H. Kang, N. J. Kim, Met. Mater. Int. Vol. 15, p. 1, 2009. https://doi.org/10.1007/s12540-009-0001-3
  15. O. Lunder, J. E. Lein, S.M. Hesjevik, T. Kr. Aune, Nisancioglu, Werkstoffe und Korrosion, Vol. 45, pp. 331-340, 1994. https://doi.org/10.1002/maco.19940450603
  16. G. L. Maker, J. Kruger, International Materials Reviews, Vol. 38, pp. 138-153, 1993. https://doi.org/10.1179/095066093790326320
  17. S. Morozumi, KEIKINZOKU, Vol. 36, pp. 453-459, 1986.