A Fully-Integrated DC-DC Buck Converter Using A New Gate Driver

새로운 게이트 드라이버를 이용한 완전 집적화된 DC-DC 벅 컨버터

  • Ahn, Young-Kook (Department of Electronics & Communication Engineering) ;
  • Jeon, In-Ho (Department of Electronics & Communication Engineering) ;
  • Roh, Jeong-Jin (Department of Electronics & Communication Engineering)
  • 안영국 (한양대학교 전자통신공학과) ;
  • 전인호 (한양대학교 전자통신공학과) ;
  • 노정진 (한양대학교 전자통신공학과)
  • Received : 2012.03.19
  • Accepted : 2012.05.04
  • Published : 2012.06.25

Abstract

This paper presents a fully-integrated buck converter equipped with packaging inductors. These inductors include parasitic inductances of the bonding wires and lead frames in the package. They have significantly better Q factors than the best on-chip inductors implemented on silicon. This paper also proposes a low-swing gate driver for efficient regulation of high-frequency switching converters. The low-swing driver uses the voltage drop of a diode-connect transistor. The proposed converter is designed and fabricated using a $0.13-{\mu}m$ CMOS process. The fully-integrated buck converter achieves 68.7% and 86.6% efficiency for 3.3 V/2.0 V and 2.8 V/2.3 V conversions, respectively.

본 논문은 패키징 인덕터를 이용한 완전 집적화된 DC-DC 벅 컨버터를 소개한다. 사용된 패키징 인덕터는 본딩 와이어와 리드 프레임의 기생 인덕턴스를 포함한다. 이들은 실리콘 위에서 구현되는 온-칩 인덕터 보다 높은 Q 인자를 가진다. 또한 본 논문은 고주파 스위칭 컨버터의 효율적인 레귤레이션을 위해 로우-스윙 게이트 드라이버를 제안한다. 로우-스윙 드라이버는 다이오드-커넥티드 트랜지스터의 전압 드롭을 이용한다. 제안된 컨버터는 $0.13-{\mu}m$ CMOS 공정을 통해 설계 및 제작되었다. 제작된 벅 컨버터의 효율은 입출력 전압비가 3.3 V/ 2.0 V와 2.8 V/ 2.3 V 일 때, 각각 68.7%, 86.6%로 측정되었다.

Keywords

References

  1. 이민우, 김형중, 노정진, "SoC 전원관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기", 대한전자공학회 논문지, 제 46권, 8호, 31-40쪽, 2009년.
  2. 김영재, 남현석, 안영국, 노정진, "Stacked Interleaved 방식의 50MHz 스위칭 주파수의 벅 변환기", 전자공학회 논문지, 제 46권, SD편, 6호, 466-473쪽, 2009년 6월.
  3. M. Ludwig, M. Duffy, T. O'Donnell, P. McCloskey and S. C. O. Mathuna "PCB integrated inductors for low power DC - DC converter", IEEE Trans. Power Electron., vol. 18, pp. 937-945, July 2003. https://doi.org/10.1109/TPEL.2003.813757
  4. E. McShane and K. Shenai, "A CMOS monolithic 5MHz, 5 V, 250 mA, 56% efficiency switch-mode boost converter with dynamic PWM for embedded power management," in Proc. Conf. Record Industry Applications Society Annu. Conf., 2001, pp. 653-657.
  5. A. Abedinpour, A. Trivedi, and K. Shenai, "DC-DC power converter for monolithic implementation," in Proc. Conf. IEEE Industry Applications Soc Annu. Meeting, 2000, pp. 2471-2475.
  6. J. Zou, J. Chen, C. Liu, and J. Schutt-Aine, "Plastic Deformation Magnetic Assembly(PDMA) of out-of-plane microstructures: technology and application," J. Microelectromech. Syst., vol. 10, no. 2, pp. 302-309, Jun. 2001. https://doi.org/10.1109/84.925791
  7. P. Hazucha, G. Schrom, J. Hahn, B. A. Bloechel, P. Hack, G. E. Dermer, S. Narendra, D. Gardner, T. Karnik, V. De, and S. Borkar, "A 233 MHz 80%-87% efficient four-phase DC-DC converter utilizing air-core inductors on package," IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 838-845, Apr. 2005. https://doi.org/10.1109/JSSC.2004.842837
  8. J. Wibben and R. Harjani, "A High-efficiency DC-DC Converter Using 2nH Integrated Inductors," IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 844-854, Apr. 2008. https://doi.org/10.1109/JSSC.2008.917321
  9. S. Abedinpour, B. Bakkaloglu, and S. Kiaei, "A multi-stage interleaved synchronous buck converter with integrated output filter in 0.18 um SiGe process," IEEE Trans. Power Electron., vol. 22, pp. 2164-2175, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909288
  10. J. Sun, D. Giuliano, S. Devarajan, J. Lu, T. P. Chow, and R. J. Gutmann, "Fully monolithic cellular buck converter design for 3-D power delivery," IEEE Trans. Very large Scale Integr. (VLSI) Syst., vol. 17, no. 3, Mar. 2009.
  11. M. Alimadadi, S. Sheikhaei, G. Lemieux, S. Mirabbasi, W. G. Dunford, and P. R. Palmer, "A fully integrated 660MHz low-swing energy-recycling dc-dc converter," IEEE Trans. Power Electron., vol. 24, pp. 1475-1485, June 2009.
  12. H. Khatri, P. S. Cudem, and L. E. Larson, "Integrated RF interference suppression filter design using bond-wire inductors," IEEE Trans. Microw. Theory Tech., vol. 56, no. 5 pp. 1024-1034, May 2008. https://doi.org/10.1109/TMTT.2008.921297
  13. Bond Wire Modeling Standard, EIA/JEDEC Standard EIA/JESD59, Jun. 1997.
  14. Wens, M. Steyaert, "A fully-integrated 0.18um CMOS DC-DC step-down converter, using a bondwire spiral inductor," IEEE Custom Integr. Circuits Conf. (CICC), 2008, pp. 17-20.
  15. P. J. Sullivan, B. A. Xavier, and W. H. Ku, "An integrated CMOS distributed amplifier utilizing packaging inductance", IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1969 - 1975, Oct. 1997. https://doi.org/10.1109/22.641806
  16. MQFP data sheet. [Online]. Available: http://www.amkor.com
  17. C.-T. Tsai, "Package inductance characterization at high frequencies", IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 17, no. 2, pp. 175 - 181, May 1994. https://doi.org/10.1109/96.330432
  18. N. C. Li, G. L. Haviland, and A. A. Tuszynski, "CMOS tapered buffer", IEEE J. Solid-State Circuits, vol. 25, pp.1005 - 1008 , 1990. https://doi.org/10.1109/4.58293
  19. P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, New York: Holt Rinehart and Winston, 1987.
  20. M. D. Mulligan, B. Broach, and T. H. Lee, "A constant-frequency method for improving light-load efficiency in synchronous buck converters," IEEE Trans. Power Electron. Lett., vol. 3, no. 1, pp. 24-29, Mar. 2005. https://doi.org/10.1109/LPEL.2005.845177