DOI QR코드

DOI QR Code

Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes

나선형 튜브내의 난류 열전달에 대한 수치적 연구

  • Received : 2011.12.06
  • Accepted : 2012.05.29
  • Published : 2012.08.01

Abstract

In this study, turbulent flow and heat transfer characteristics in a helically coiled tube have been numerically investigated. Helically coiled tubes are commonly used in heat exchange systems to enhance the heat transfer rate. Accordingly, they have been widely studied experimentally; however, most studies have focused on the pressure drop and heat transfer correlations. The centrifugal force caused by a helical tube increases the wall shear stress and heat transfer rate on the outer side of the helical tube while decreasing those on the inner side of the tube. Therefore, this study quantitatively shows the variation of the local Nusselt number and friction factor along the circumference at the wall of a helical tube by varying the coil diameter and Reynolds number. It is seen that the local heat transfer rate and wall shear stress greatly decrease near the inner side of the tube, which can affect the safety of the tube materials. Moreover, this study verifies the previous experimental correlations for the friction factor and Nusselt number, and it shows that the correlation between the two in a straight tube can be applied to a helical tube. It is expected that the results of this study can be used as important data for the safety evaluation of heat exchangers and steam generators.

본 연구에서는 나선형 튜브내의 난류 열전달 및 하중 특성을 수치해석 방법을 이용하여 파악하였다. 열교환기와 같은 공학적 설비에서 관내 열전달을 향상시키기 위해 튜브의 형상을 나선형으로 설계한다. 이에 나선형 튜브내의 열전달 및 난류 특성에 대한 많은 실험적 연구가 이루어 졌으나, 대부분의 연구가 압력 강하 및 열전달 상관관계에 초점이 맞추어 진행되었다. 나선형 튜브내의 유동은 원심력에 의해 튜브 바깥쪽에서는 상대적으로 높은 열전달 및 전단응력이 발생하지만, 안쪽에서는 낮은 열전달 및 전단응력이 발생하게 된다. 따라서 본 연구에서는 튜브의 원주방향으로 발생하는 전단 응력 및 Nusselt 수의 변화를 Reynolds 수와 나선 코일의 지름을 변경하며 정량적으로 살펴보았다. 나선 코일 안쪽에서 국부적인 전단응력과 열전달율이 크게 낮게 특정되었으며, 이는 튜브 재질의 안정성에 영향을 미칠 것으로 판단되었다. 또한 본 연구에서는 마찰계수와 Nusselt 수에 대한 기존 상관관계식을 검증하였으며, 직관에서의 마찰계수와 Nusselt 수의 상관관계식이 나선형 튜브의 형상에도 적용될 수 있음을 관측하였다. 본 연구의 결과는 열교환기나 증기발생기의 안전성 평가를 위해 중요한 데이터로 활용될 수 있을 것이다.

Keywords

References

  1. White, C. M., 1932, "Fluid Friction and Its Relation to Heat Transfer," Trans. Inst. Chem. Eng. (London), Vol. 10, pp.66-86.
  2. Ito, H., 1959, "Friction Factors for Turbulent Flow in Curved Pipes," Trans. Am. Soc. Mech. Eng. J. Basic Eng., D81, pp.123-134.
  3. Srinivasan, P. S., Nandapurkar, S.S., Hollland, F.A., 1968, "Pressure Drop and Heat Transfer in Coils," Chem. Eng. (Lond), Vol. 218, pp.113-119.
  4. Mishra, P. and Gupta, S.N., 1979 "Momentum Transfer in Curved Pipes, 1. Newtotian Fluids," Ind. Eng. Chem. Process Des. Dev., Vol. 1, pp.130-137.
  5. Ali, S., 2001, "Pressure Drop Correlations for Flow Through Regular Helical Coil Tubes," Fluid Mech. Res., Vol. 28, pp.295-310.
  6. Naphon, P. and Wongwises, S., 2006, "A Review of Flow and Heat Transfer Characteristics in Curved Tubes," Renew. Sust. Energ. Rev., Vol. 10, pp.463-490. https://doi.org/10.1016/j.rser.2004.09.014
  7. Boersma, B.J., and Nieuwstadt, F. T. M., 1996, "Large-Eddy Simulation of Turbulent Flow in a Curved Pipe," J. Fluids Engrg., Vol. 118, pp. 248-254. https://doi.org/10.1115/1.2817370
  8. Boersma, B.J., 1997, "Electromagnetic Effects in Cylindrical Pipe Flow," Ph.D. Thesis, Delft University Press.
  9. Huttl, T. J., and Friedrich, R., 2001, "Direct Numerical Simulation of Turbulent Flows in Curved and Helically Coiled Pipes," Comput. Fluids, Vol. 30, pp. 591-605. https://doi.org/10.1016/S0045-7930(01)00008-1
  10. Roger, G.F.C. and Mayhew, Y.R., 1964, "Heat Transfer and Pressure Loss in Helically Coiled Tubes with Turbulent Flow," Int. J. Heat Mass Transfer, Vol. 7, pp. 1207-1216. https://doi.org/10.1016/0017-9310(64)90062-6
  11. Guo, L., Chen, X., Feng, C. Z. and Bai, B., 1998, "Transient Convective Heat Transfer in a Helical Coiled Tube with Pulsatile Fully Developed Turbulent Flow, " Int. J. Heat Mass Transfer, Vol. 41, pp.2867-2875. https://doi.org/10.1016/S0017-9310(98)80003-3
  12. Xin, R. C., Awwad, A., Dong, Z.F. and Ebadian, M.A., 1997, "An Experimental Study of Single-Phase and Two-Phase Flow Pressure Drop in Annular Helicoidal Pipes," Int. J. Heat Fluid Flow, Vol. 18, pp. 482-488. https://doi.org/10.1016/S0142-727X(97)80006-9
  13. Ansys CFX-13.0, 2010, Ansys Inc.
  14. Menter, F.F., 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA J., Vol. 32, pp. 1598-1605. https://doi.org/10.2514/3.12149
  15. Bardina, J. E., Huang, P. G. and Coakley, T., 1997, "Turbulence Modeling Validation," AIAA J., pp. 1997-2121.
  16. Spalart, P. R. and Shur, M., 1997, "On the Sensitization of Turbulence Models to Rotation and Curvature," Aerosp. Sci. Technol., Vol. 1, No. 5, pp. 297-302. https://doi.org/10.1016/S1270-9638(97)90051-1
  17. Gnielinski, V., 1976, "New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," Int. Chem. Eng., Vol. 16, pp. 359-368.