DOI QR코드

DOI QR Code

A Study on Carbon Dioxide Capture Performance of KOH Aqueous Solution via Chemical Absorption

화학 흡수를 이용한 KOH 수용액의 이산화탄소 포집 성능에 관한 연구

  • Yoo, Mi-Ran (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Han, Sang-Jun (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Shin, Ji-Yoon (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea)
  • 유미란 (가톨릭대학교 환경공학과) ;
  • 한상준 (가톨릭대학교 환경공학과) ;
  • 신지윤 (가톨릭대학교 환경공학과) ;
  • 위정호 (가톨릭대학교 환경공학과)
  • Received : 2011.10.19
  • Accepted : 2012.01.20
  • Published : 2012.01.31

Abstract

The present paper investigates the performance of the KOH aqueous solution as an absorbent to capture carbon dioxide ($CO_2$). The chemical absorption was carried out according to consecutive reactions that are generated in the order of $K_2CO_3$ and $KHCO_3$. The overall absorption was completed with following the physical absorption. When the absorption was conducted with the KOH as the limiting reactants in batch a reactor, $K_2CO_3$ production rate was the 1st order reaction for $OH^-$. However, $KHCO_3$ generation reaction was independent of the $CO_3^{2-}$ concentration and the rate was calculated to be $0.18gCO_2/min$ for all KOH absorbents, which is the same value of the reaction rate using $K_2CO_3$ aqueous solution as the absorbents. The overall $CO_2$ capture ratio of the 5% KOH absorbent was estimated to be 19% and the individual value in section 1 and 2 was 57 and 12%, respectively. The amount of $CO_2$ absorbed in the solution was very slightly less than the theoretical value, which was ascribed to the side reaction that produces $K_2CO_3{\cdot}KHCO_3{\cdot}1.5H_2O$ during the reaction and the consequent diminish in $CO_2$ absorption in the KOH solution.

수산화칼륨(KOH) 수용액을 이용한 $CO_2$ 포집에 관한 연구를 수행한 결과 $K_2CO_3$ 생성 및 $KHCO_3$가 생성되는 화학흡수 반응이 순차적으로 일어났고 그 후 $CO_2$ 물리흡수가 일어남으로써 전 반응이 종료되었다. KOH가 한계 반응물인 회분식 흡수에서 $K_2CO_3$의 생성 속도는 $OH^-$ 농도에 관해 1차 반응이며 $KHCO_3$ 생성 속도는 $CO_3^{2-}$ 농도에 0차 반응으로 흡수 속도는 $0.18gCO_2/mi$n으로 계산되었고 이 값은 $K_2CO_3$ 수용액에서의 흡수 속도와 일치한다. 5% KOH 흡수제의 $CO_2$ 포집율의 경우 1구간에서 57%, 2구간에서 12% 이었으며 전체 19%로 측정되었다. KOH 흡수제의 $CO_2$ 포집양은 이론값보다 2~3% 정도 작았는데 그 이유는 $KHCO_3$ 이외 $K_2CO_3{\cdot}KHCO_3{\cdot}1.5H_2O$가 생성되는 부 반응이 동반되기 때문으로 판단된다.

Keywords

References

  1. 박상도, "이산화탄소 포집 기술," News & Information for Chemical Engineers, 27(2), 143(2009).
  2. 박정훈, 백일현, "기획특집 : 이산화탄소 포집기술 ; 연소전 $CO_{2}$ 포집기술 현황 및 전망," 공업화학전망, 12(1), 3-14 (2009).
  3. 위정호, 김정인, 송인승, 송보윤, 최경식, "국내 전력 발전 및 산업부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감," 대한환경공학회지, 30(12), 961-971 (2008).
  4. 심재구, 김준한, 장경룡, 엄희문, "Pilot Plant를 이용한 화력 발전소 배기가스 중 $CO_{2}$와 MEA의 흡수 특성," 대한환경공학회지, 25(12), 1557-1563(2003).
  5. 김영은, 남성찬, 이용택, 윤여일, "$K_{2}CO_{3}$/homopiperazine 수 용액의 이산화탄소 흡수 특성 연구," 공업화학, 21(3), 284-290(2010).
  6. Zhao, B., Sun, Y., Yuan, Y., Gao, J., Wang, S., Zhuo, Y. and Chen, C., "Study on corrosion in $CO_{2}$ chemical absorption process using amine solution," Energy Procedia, 4, 93-100 (2011). https://doi.org/10.1016/j.egypro.2011.01.028
  7. Qin, F., Wang, S., Hartono, A., Svendsen, H. F. and Chen, C., "Kinetics of $CO_{2}$absorption in aqueous ammonia solution," Int. J. Greenh. Gas Con., 4(5), 729-738(2010). https://doi.org/10.1016/j.ijggc.2010.04.010
  8. 오광중, 이상섭, 최원준, 이재정, 손병현, "MEA/AMP 혼합 흡수제를 이용한 이산화탄소 흡수 및 재생 특성, "대한환경공학회지, 25(5), 609-615(2003).
  9. 이창근, "건식흡수제 이용 연소배가스 이산화탄소 포집기술," 화학공학, 48(2), 140-146(2010).
  10. 김기찬, 김광렬, 박영철, 조성호, 류호정, 이창근, "두 개의 기포유동층으로 구성된 연속장치에서 $CO_{2}$ 회수를 위한 K- 계열 고체흡수제의 수력학적 특성 및 반응특성," 화학공학, 48(4), 499-505(2010).
  11. Hoffman, J. S. and Pennline, H. W., "Investgation of $CO_{2}$ capture using regenerable sorbents," The Proceedings of 17 th Annual International Pittsburgh Coal Conference(2000).
  12. Metz, B., Davidson, O., de Coninck, H., Loos, M. and Meyer, L., "IPCC special report on carbon dioxide capture and storage," Cambridge University Press, New York(2005).
  13. Lee, S. C., Choi, B. Y., Ryu, C. K., Ahn, Y. S., Lee, T. J. and Kim, J. C., "The Effect of water on the activation and the $CO_{2}$ capture capacities of alkali metal-based sorbents," 화학공학, 23(3), 374-379(2006).
  14. 이창근, 홍선욱, 조성호, 손재익, 최정후, "분체공학, 유동층, 고분자, 재료(무기, 유기): 유동층 $CO_{2}$ 회수공정을 위한 흡수제의 흡수 및 재생특성," 화학공학, 43(2), 294-298(2005).
  15. 민병무, "연소 후 이산화탄소 포집기술 현황," 공업화학 전망, 12(1), 15-29(2009).
  16. 박근우, 박영성, 박영철, 조성호, 이창근, "회분식 기포유동 층 반응기에서 K-계열 건식흡수제의 주입수분농도 및 재생 반응온도에 따른 $CO_{2}$ 흡수-재생 반응특성 연구," 화학공학, 47(3), 349-354(2009).
  17. Sanyal, D., Vasishtha, D. and Saraf, D. N., "Modeling of carbon dioxide absorber using hot carbonate process," Ind. Eng. Chem. Res., 27, 2149-2156(1988). https://doi.org/10.1021/ie00083a032
  18. Kamps, A. P. -S., Meyer, E., Rumpf, B. and Maurer, G., "Solubility of $CO_{2}$ in aqueous solutions of KCl and in aqueous solutions of $K_{2}CO_{3}$," J. Chem. Eng. Data, 52, 817-832(2007). https://doi.org/10.1021/je060430q
  19. Benson, H. E., Field, J. H. and Jimeson, R. M., "$CO_{2}$ absorption employing hot potassium carbonate solutions," Chem. Eng. Prog., 50(7), 356-364(1954).
  20. Benson, H. E., Field, J. H. and Haynes, W. P., "Improved process for $CO_{2}$ absorption uses hot carbonate solutions," Chem. Eng. Prog., 52, 433-438(1956).
  21. Tosh, J. S., Field, J. H., Benson, H. E. and Haynes, W. P., "Equilibrium study of the system potassiumcarbonate, potassium bicarbonate, carbon dioxide, and water," United States Bureau of Mines, 5484, 23(1959).
  22. Bartoo, R. K., "Removing Acid Gas by the Benfield Process," Chem. Eng. Prog., 80(10), 35-39(1984).
  23. Erga, O., Juliussen, O. and Lidal, H., "Carbon dioxide recovery by means of aqueous amines," Energy Convers. Manage., 36(6-9), 387-392(1995). https://doi.org/10.1016/0196-8904(95)00027-B
  24. Danckwerts, P. V., "Gas liquid reaction," McGrow-Hill, New York, USA, pp. 264-267(1967).
  25. Danckwerts, P. V. and McNeil, K. M., "The absorption on carbon dioxide into aqueous amine solution and effects of catalysis," Trans. Inst. Chem. Engrs., 45, 32-39(1967).
  26. Mahajani, V. V. and Danckwerts, P. V., "The stripping of $CO_{2}$ from amine-promoted potash solutions at $100^{\circ}C$," Chem. Eng. Sci., 38, 321-327(1983). https://doi.org/10.1016/0009-2509(83)85015-5
  27. Pohorecki, R. and Kucharski, E., "Desorption with chemical reaction in the system $CO_{2}$ aqueous solution of potasium carbonate," Chem. Eng. J., 46, 1-7(1991).
  28. Nii, S., Iwata. Y., Kato, M. and Takahashi, K., "Regeneration of $CO_{2}$ absorbent, DEA-Carbonate solution by $NaHCO_{3}$ precipitation with $Na_{2}CO_{3}$ addition," J. Chem. Eng. Jpn., 30(4), 766-769(1997). https://doi.org/10.1252/jcej.30.766
  29. Nii, S., Iwata. Y., Takahashi, K. and Takeuchi, H., "Regeneration of $CO_{2}$-loaded carbonate solution by reducing pressure," J. Chem. Eng. Jpn., 28(2), 148-153(1995). https://doi.org/10.1252/jcej.28.148
  30. 송호준, 이승문, 이준호, 박진원, 장경룡, 심재구, 김준한, "Serine 칼륨염 수용액의 이산화탄소 흡수특성," 대한환경공학회지, 31(7), 505-514(2009).
  31. Milic, S., Colovic, N., Antonijevi, M. and Gaal, F., "A Thermoanalytical Study of the Solid State Reactions in the $K_{2}CO_{2}-M_{x}O_{y}$ Systems. Evidence for a kinetic compensation effect," J. Therm. Anal. Calorim., 61(1), 229-238(2000). https://doi.org/10.1023/A:1010145615439
  32. http://powerenergycenter.com/potassium-hydroxide.php
  33. http://www.udmercy.edu/crna/agm/07.htm
  34. Darmana, D., Henket, R. L. B. and Kuipers, J. A. M., "Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: Chemisorption of $CO_{2}$ into NaOH solution, numerical and experimental study," Chem. Eng. Sci., 62(24), 2256-2575 (2007).
  35. Fleischer, C., Becker, S. and Eigenberger, G., "Detailed modeling of the chemisorption of $CO_{2}$ into NaOH in a bubble column," Chem. Eng. Sci., 51(10), 1715-1724(1996). https://doi.org/10.1016/0009-2509(96)00030-9
  36. Perry, R. H. and Green, D. W., "Perry's Chemical Engineer's Handbook," McGrow-Hill, New York, USA, pp. 2-126-128 (2007).
  37. Han, S.-J., Yoo, M., Kim, D. W. and Wee, J.-H., "Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent," Energy Fuel., 25, 3825-3834(2011). https://doi.org/10.1021/ef200415p

Cited by

  1. Capture of Carbon Dioxide Emitted from Coal-Fired Power Plant Using Seawater vol.35, pp.5, 2013, https://doi.org/10.4491/KSEE.2013.35.5.340
  2. Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture vol.24, pp.29, 2017, https://doi.org/10.1007/s11356-017-9913-5