DOI QR코드

DOI QR Code

Biochemical Characterization of Thermophilic Dextranase from a Thermophilic Bacterium, Thermoanaerobacter pseudethanolicus

  • Park, Tae-Soon (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jeong, Hyung-Jae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ko, Jin-A (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Young-Bae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Su-Jin (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Do-Man (School of Biological Sciences and Technology and the Research Institute for Catalysis, Chonnam National University) ;
  • Kim, Young-Min (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Woo-Song (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2011.12.12
  • Accepted : 2012.01.17
  • Published : 2012.05.28

Abstract

TPDex, a putative dextranase from Thermoanaerobacter pseudethanolicus, was purified as a single 70 kDa band of 7.37 U/mg. Its optimum pH was 5.2 and the enzyme was stable between pH 3.1 and 8.5 at $70^{\circ}C$. A half-life comparison showed that TPDex was stable for 7.4 h at $70^{\circ}C$, whereas Chaetominum dextranase (CEDex), currently used as a dextranase for sugar milling, was stable at $55^{\circ}C$. TPDex showed broad dextranase activity regardless of dextran types, including dextran T2000, 742CB dextran, and alternan. TPDex showed the highest thermostability among the characterized dextranases, and may be a suitable enzyme for use in sugar manufacture without decreased temperature.

Keywords

References

  1. Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Britton, H. T. S. and R. A. Robinson. 1931. Universal buffer solutions and dissociation constant of veronal. J. Chem. Soc. 1456-1462.
  3. Finnegan, P. M., S. M. Brumbley, M. G. O. Shea, K. M. H. Nevalainen, and P. L. Bergquist. 2004. Isolation and characterization of genes encoding thermoactive and thermostable dextranases from two thermotolerant soil bacteria. Curr. Microbiol. 49: 327-333. https://doi.org/10.1007/s00284-004-4308-5
  4. Finnegan, P. M., S. M. Brumbley, M. G. O. Shea, K. M. H. Nevalainen, and P. L. Bergquist. 2005. Diverse dextranase genes from Paenibacillus species. Arch. Microbiol. 183: 140-147. https://doi.org/10.1007/s00203-004-0756-3
  5. Hattori, A., K. Ishibashi, and S. Minato. 1981. The purification and characterization of the dextranase of Chaetomium gracile. Agric. Biol. Chem. 45: 2409-2416. https://doi.org/10.1271/bbb1961.45.2409
  6. Hild, E., S. M. Brubmley, M. G. O. Shea, H. Nevalainen, and Q. L. Bergquist. 2007. A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Appl. Microbiol. Biotechnol. 75: 1071-1078. https://doi.org/10.1007/s00253-007-0936-6
  7. Hoster, F., R. Daniel, and G. Gottschalk. 2001. Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J. Gen. Appl. Microbiol. 47: 187-192. https://doi.org/10.2323/jgam.47.187
  8. Inkerman, P. A. 1990. An appraisal of the use of dextranase, 2411-2327. Proc. XVII Congress Int. Soc. Sugar Cane Technologists, Manila, Philippines.
  9. Khalikova E., P. Susi, and T. Korpela. 2005. Microbial dextran-hydrolyzing enzymes: Fundamentals and applications. Microbiol. Mol. Biol. Rev. 69: 306-325. https://doi.org/10.1128/MMBR.69.2.306-325.2005
  10. Kim, Y. M. and D. Kim. 2010. Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl. Microbiol. Biotechnol. 85: 581-587. https://doi.org/10.1007/s00253-009-2121-6
  11. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  12. Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextan and acceptor-products by Leuconosotc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
  13. Wynter, C. V. A., C. F. Galea, L. M. Cox, M. W. Dawson, B. K. C. Patel, P. A. Inkerman, and S. Hamilton. 1995. Thermostable dextranases: Screening, detection and preliminary characterization. J. Appl. Bacteriol. 79: 203-212. https://doi.org/10.1111/j.1365-2672.1995.tb00936.x
  14. Wynter, C. V. A., B. K. C. Patel, P. Bain, J. De. Jersey, S. Hamilton, and P. A. Inkerman. 1996. A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 140: 271-276. https://doi.org/10.1111/j.1574-6968.1996.tb08348.x
  15. Wynter, C. V. A., M. Chan, J. De. Jersey, B. K. C. Patel, P. A. Inkerman, and S. Hamilton 1997. Isolation and characterization of a thermostable dextranase. Enzyme. Microb. Technol. 20: 242-247. https://doi.org/10.1016/S0141-0229(96)00118-4
  16. Yamamoto, T., T. Terasawa, Y. M. Kim, A. Kimura, Y, Kitamura, M. Kobayashi, and K. Funane. 2006. Identification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040. Biosci. Biotechnol. Biochem. 70: 1947-1953. https://doi.org/10.1271/bbb.60105
  17. Zhaxybayeva, O., K. S. Swithers, P. Lapierre, G. P. Fournier, D. M. Bickhart, R. T. DeBoy, et al. 2009. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl. Acad. Sci. USA 106: 5865-5870. https://doi.org/10.1073/pnas.0901260106

Cited by

  1. Enzymatic Synthesis of Puerarin Glucosides Using Leuconostoc Dextransucrase vol.22, pp.9, 2012, https://doi.org/10.4014/jmb.1202.02007
  2. Screening, production, and characterization of dextranase from Catenovulum sp. vol.64, pp.1, 2012, https://doi.org/10.1007/s13213-013-0644-7
  3. Chitosan hydrogel microspheres: an effective covalent matrix for crosslinking of soluble dextranase to increase stability and recycling efficiency vol.40, pp.3, 2012, https://doi.org/10.1007/s00449-016-1713-7
  4. Purification and Characterization of a Biofilm-Degradable Dextranase from a Marine Bacterium vol.16, pp.2, 2012, https://doi.org/10.3390/md16020051
  5. Purification and Characterization Including Dextran Hydrolysis of Dextranase from Aspergillus allahabadii X26 vol.21, pp.2, 2019, https://doi.org/10.1007/s12355-018-0652-9
  6. A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides vol.103, pp.16, 2012, https://doi.org/10.1007/s00253-019-09965-y
  7. Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide vol.17, pp.8, 2012, https://doi.org/10.3390/md17080479
  8. Degradation of Long Chain Polymer (Dextran) Using Thermostable Dextranase from Hydrothermal Spring Isolate (Bacillus megaterium) vol.36, pp.8, 2012, https://doi.org/10.1080/01490451.2019.1605427