DOI QR코드

DOI QR Code

경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field

  • 안창환 (영남대학교 미생물생명공학과) ;
  • 임종희 (영남대학교 미생물생명공학과) ;
  • 김요환 (영남대학교 미생물생명공학과) ;
  • 정병권 (영남대학교 미생물생명공학과) ;
  • 김진원 (예천군 농업기술센터) ;
  • 김상달 (영남대학교 미생물생명공학과)
  • An, Chang-Hwan (Department of Applied Microbiology & Biotechnology, Yeungnam University) ;
  • Lim, Jong-Hui (Department of Applied Microbiology & Biotechnology, Yeungnam University) ;
  • Kim, Yo-Hwan (Department of Applied Microbiology & Biotechnology, Yeungnam University) ;
  • Jung, Byung-Kwon (Department of Applied Microbiology & Biotechnology, Yeungnam University) ;
  • Kim, Jin-Won (Yecheon Agricultural Technology Center) ;
  • Kim, Sang-Dal (Department of Applied Microbiology & Biotechnology, Yeungnam University)
  • 투고 : 2011.10.21
  • 심사 : 2011.12.09
  • 발행 : 2012.03.28

초록

두 종의 Bacillus와 한 종의 Pseudomonas로 구성된 컨소시엄 미생물제제를 고추 경작지에 첨가하였을 때 경작지 토양의 미생물 다양성 변화를 조사하기 위해 건전한 토양의 지표가 되는 질소순환관여 미생물과 근권토양 내 섬유소 분해기능, 인산가용화기능과 urea 가수분해기능을 가지는 기능성미생물의 활성과 밀도를 측정하였다. 고추 경작지 토양에 컨소시엄 PGPR 미생물인 B. subtilis AH18, B. licheniformis K11과 P. fluorescens 2112의 컨소시엄 미생물제제를 처리하여 토양미생물의 다양성에 변화를 측정하여 컨소시엄 미생물제제의 처리에 의한 근권토양 미생물의 다양성 변화와 고추의 생육에 미치는 영향을 분석하였다. 컨소시엄 미생물제제 처리구의 경우 Actinomyces spp., Trichoderma spp., 광합성세균과 Azotobacter spp.가 다른 처리구에 비하여 1.7-5배 이상 높았으며, 질소 순환에 관여하는 미생물은 1.4-4배 증가되었다. 또한 기능성 미생물의 다양성도 화학제제나 물처리구와 비교하였을 때 1.3-3배 증가하였다. 건고추 수확량은 컨소시엄 미생물제제를 처리하였을 경우 대조구나 화학제제를 처리하였을 때보다 15%이상 수확량이 증대되었다. 따라서 PGPR 컨소시엄 미생물제제의 처리로 인해 고추 경작지 토양의 근권미생물 다양성과 작물의 생산성에 긍정적인 영향을 주는 것으로 생각된다. 추후 메타지노믹스를 활용하여 미생물 다양성 변화를 추가적으로 확인할 예정이다.

We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.

키워드

참고문헌

  1. Anderson, I. C. and J. S. Levine. 1986. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl. Environ. Microbiol. 51: 938-945.
  2. Barbara, R. H. and H. Thomas. 1997. Azoarcus spp. and their interactions with grass roots. Plant and Soil. 194: 57-64.
  3. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58.
  4. Brown, M. E., S. K. Burlingham, and R. M. Jackson. 1962. Studies on Azotobacter species in soil. I. Comparison of media and gechniques for counting Azotobacter in soil. Plant Soil 17: 309-319.
  5. Cao, L. X., Z. Q. Qiu, J. L. You, H. M. Tan, and S. Zhou. 2004. Isolation and characterization of endophytic Streptomyces antagonists of Fusarium wilt pathogen from surface sterilized banana roots. FEMS Microbiol. 247: 147-152.
  6. Cheng, H. H. 1990. Pesticides in the soil environment; precesses, impacts and medeling. Soil Science Society of America. pp. 429-466.
  7. Choi, E. H., S. E. Lee, K. S. Yoon, D. K. Kwon, J. K. Sohn, S. H. Park, M. S. Han, and S. Y. Ghim. 2003. Isolation of nitrogen-fixing bacteria from gramineous crops and measurement of nitrogenase activity. Korean J. Microbiol. Biotechnol. 31: 18-24.
  8. Choi, J. K., and S. D. Kim. 1998. Improvement in antagonistic ablility of antagonistic bacterium Bacillus sp. SH14 by transfer of the urease gene. Kor. J. Appl. Microbiol. Biotechnol. 26: 122-129.
  9. Gamble, T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33: 926-939.
  10. John, W. D. and Michael R. Z. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecology 15: 3-11.
  11. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006a. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Korean J. Microbiol. Biotechenol. 34: 94-100.
  12. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006b. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanism. J. Kor. Soc. Appl. Biol. Chem. 50: 23-28.
  13. Jung, H. Y., J. H. Lim, B. K. Kim, J. J. Lee, and S. D. Kim. 2010. Selection and mechanisms of indigenous antagonistic microorganisms against sheath rot and dry rot disease of garlic. Korean J. Microbiol. Biotechnol. 38: 295-301.
  14. Katsuji, W. and K. Nobuhisa. 2009, Use of a microchip electrophoresis system for estimation of bacteria phylogeny and analtsis of ${NO_3}^-$ reducing bacterial flora in field soils. Biosci. Biotechnol. Biochem. 73: 479-488.
  15. Kim, S. H., K. S. Bae, J. K. Yang, Y. J. Lee, J. S. Oh, S. J. Jung, B. J. Moon, and J. W. Lee. 2004. Effect of microbial product made of Bacillus stearothermophilus DL-3 on microorganisms in soil and growth of lettuce and chinese cabbage. J. Life Science 14: 778-787.
  16. Kwon, Y. T. 2008. Capsicum annuum manual. Yeongyanggun Agriculture Extension center
  17. Lee, E. T. and S. D. Kim. 1999. Selection and antifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against red-pepper rotting Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechn. 28: 334-340.
  18. Lee, H. Y. 2004. Optimization of environmental parameters for extracellular chitinase production by Trichoderma hazianum SJG-99721 in bioreactor. Kor. J. Environ. Biol. 22: 167-170.
  19. Lee, S. J., S. E. Lee, K. J. Seul, S. H. Park, and S. Y. Ghim. 2006. Plant growth-promoting capabilities of diazotrophs from wild Gramineous crops. Korean J. Microbiol. Biotechnol. 34: 78-82.
  20. Lee, S. H., W. S. Kim, K. Y. Kim, T. H. Kim, H. Whangbo, W. J. Jung, and S. J. Chung. 2003. Effect of chitin compost incorporated with chitinolytic bacteria and rice bran on chemical properties and microbial comuunity in pear orchard soil. J. Kor. Soc. Hort. 44: 201-206.
  21. Lee, Y. H., H. T. Jeong, H. D. Yun. 2008. Effects of Rhodobacter sp. SA16 on lettuce (Lactuca sativa L.) in plastic film house. Kor. J. Environ. Agric. 27: 163-170.
  22. Lee, Y. H. and S. T. Lee. 2011. Comparison of microbial community of orchard soils in gyeongnam province. Kor. J. Soil. Sci. Fert. 44: 492-497.
  23. Lim, J. H., J. G. Kim, and S. D. Kim. 2008. Selection of the auxin and ACC deaminase producing plant growth promoting rhizobacteria from the coastal sand dune plants. Korean J. Microbiol. Biotechnol. 36: 268-275.
  24. Lim, J. H. and S. D. Kim. 2010. Biocontrol of phytophthora blight of red pepper caused by Phytophthora capsici using Bacillus subtilis AH18 and B. licheniformis K11 formulation. Kor. J. Soc. Appl. Biol. Chem. 53: 766-773.
  25. Munnecke, D. M., L. M. John. H. W. Talbot, and S. Barik. 1982. Microbial metabolism and enzymology of selected pesricides, in A. M. Chakrabarty (ed.) Biodegradation and Detoxication oF Environmental Pollutants, CRC press, Boca Raton, FL: 1-32.
  26. Park, K. C., T. R. Kwon, K. S. Jang, and Y. S. Kim. 2008. Short-term effects of cultivars and compost on soil microbial activities and diversities in red pepper field. Kor. J. Environ. Agric. 27: 139-144.
  27. Park, K. C., J. H. Lim, Y. K. Yi, and S. D. Kim. 2009. Effecs of phytophthora blicht-antagonistic microorganisms Bacillus subtilis AH18 and Bacillus licheniformis K11 on the soil microbial community. J. Appl. Biol. Chem. 52: 121-125.
  28. Samuels, G. J. 1996. Trichoderma: a review of biology and systematic of the genus. Mycol. Res. 100: 923-935.
  29. Sharma, S. K., A. Ramesh, M. P. Sharma, O. P. Joshi, B. Govaerts, K. L. Steenwerth, and D. L. Karlen. 2011. Microbial community structure and diversity as indicators for evaluating soil quaity. Sustainable Agriculture Reviews. 5: 317-358.
  30. Suh, J. S. and J. S. Shin. 1997. soil microbial diversity of paddy fields in Korea. Kor. J. Soil. Fert. 30: 200-207.
  31. Suh, J. S., J. S. Kwon, and H. J. Noh. 2010. Effect of the long-term application of organic matters on microbial diversity in upland soils. Kor. J. Soil. Sci. Fert 43: 987-994.
  32. Tate, R. L. 1995. Soil microbiology. Energy Transformations and Metabolic Activities of Soil Microbes. John Wiley & Sons Inc. p64-92. USA.
  33. Teather, R. M., and P. J. Wood. 1982. Use of congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Envion. Microbiol. 43: 777-780.
  34. Vyas, P., P. Rahi, A. Chauhan, and A. Gulati. 2007. Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Microbiol. Res. 167: 931-938.
  35. Woo, S. M. and S. D. Kim. 2007. Confirmation of non-siderophore antifungal substance and cellulase from Bacillus licheniformis K11 containing antagonistic ability and plant growth promoting activity. J. Life Sci. 17: 983-988.
  36. Yang, J. C., H. K. Jung, H. S. Lee, S. J. Choi, S. S. Yun, K. S. Ahn, and T. M. Sa. 2004. Selection of filamentous cyanobacteria and optimization of culture condition for recycling waste nutrient solution. Kor. J. Soil. Sci. Fert. 37: 177-183.

피인용 문헌

  1. Effects of planting density on the production of pepper for mechanized production operation vol.45, pp.4, 2012, https://doi.org/10.7744/kjoas.20180083