DOI QR코드

DOI QR Code

Antifungal Activity and Plant Growth Promotion by Rhizobacteria Inhibiting Growth of Plant Pathogenic Fungi

식물병원성 진균을 억제하는 근권세균의 항진균능과 식물생장촉진능

  • Jung, Taeck-Kyung (Department of Biological Sciences, Kangwon National University) ;
  • Kim, Ji-Hyun (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • 정택경 (강원대학교 자연과학대학 생명과학과) ;
  • 김지현 (강원대학교 자연과학대학 생명과학과) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학과)
  • Received : 2012.01.09
  • Accepted : 2012.03.15
  • Published : 2012.03.31

Abstract

Since many pesticides cause various health and environmental problems, alternative measures to replace them are needed, and the bacteria producing the antifungal substances can be one of them. In this study, several rhizobacteria were isolated and their antifungal activities against some important plant pathogenic fungi were examined. Pseudomonas otitidis TK1 and Paenibacillus peoriae RhAn32 inhibited the growth of Fusarium oxysporum f. sp. niveum and F. oxysporum f. sp. lycopersici by 49.8% and 45.6%, and 45.1% and 48.3%, respectively compared to those of the control. P. peoriae RhAn32 also decreased the growth of F. oxysporum f. sp. raphani by 37.5%. This growth inhibition might be due to the production of antifungal substances, such as siderophore, hydrogen cyanide and chitinase, which were produced by these rhizobacteria. P. otitidis TK1 also produced plant growth hormones indole acetic acid and indole butyric acid at $293.41{\mu}g/mg$ protein and $418.53{\mu}g/mg$ protein, respectively. When P. otitidis TK1 and B. cereus TK2 were inoculated together with F. oxysporum f. sp. lycopersici to the 4 weeks grown tomato seedlings and incubated additional 8 weeks, the stem lengths of tomato increased up to 45.7% and 55.3% and root lengths were raised to 64.9% and 60.8%, respectively than those of the control group. The wet weights increased by 118% and 182%, respectively compared to the control group.

여러 식물의 근권에서 세균 균주들을 분리하여 이들의 항진균성 물질 생성능을 조사하였다. 분리균주 중 Fusarium oxysproum을 포함한 5가지 주요 식물병원성 진균에 대한 생장저해가 우수한 7개 균주를 16S rRNA 유전자 염기서열로 동정하였다. 이들 중 Paenibacillus peoriae RhAn32, Pseudomonas otitidis TK1과 Bacillus cereus TK2가 가장 넓은 생장 저해범위를 나타내었으며 항진균성 물질 중 siderophore 생성능은 P. otitidis TK1이 3.21 mM/ml로 가장 높았고 HCN은 Pseudomonas koreensis Rh2와 Rh7 균주만이 생성하였으며 Brevibacterium frigoritolerans EnA9와 P. peoriae RhAn32는 각각 1558.9와 $1436.7{\mu}M$ glucose/min/mg protein의 높은 chitinase 활성을 나타내었다. P. otitidis TK1과 P. peoriae RhAn32의 항진균능을 진균과의 공동배양을 통해 정량분석한 결과 세 종류의 Fusarium oxysproum의 생장을 유의성 있게 저해하였다. P. otitidis TK1은 식물생장을 촉진하는 호르몬인 auxin의 생성능도 가장 높았는데 이 균주를 4주 자란 토마토 유묘에 F. oxysporum f. sp. lycopersici와 동시에 접종하여 8주간 재배하였을 때 줄기와 뿌리 길이 및 습윤 중량이 비접종 대조군에 비해 각각 45.7, 64.9와 118%로 유의성 있게 증가하였다. 따라서 이 균주들은 유기합성농약을 대체하면서 식물생장을 촉진하는 미생물제로서의 적용이 가능할 것으로 기대된다.

Keywords

References

  1. Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39-45. https://doi.org/10.1007/BF00369386
  2. Ams, D.A., Maurice, P.A., Hersman, L.E., and Forsythe, J.F. 2002. Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chem. Geol. 188, 161-170. https://doi.org/10.1016/S0009-2541(02)00077-3
  3. Bashan, Y. and de-Bashan, L.E. 2005. Plant growth promoting, pp. 103-115. In Hillel, D. (ed.), Encyclopedia of soils in the environment. Elsevier, Oxford, UK.
  4. Han, K., Lee, C., and Kim, S. 1999. Antagonistic role of chitinase and antibiotic produced by Promocromonosproa sp. KH-28 toward F. oxysporum. Kor. J. Appl. Microbiol. Biotechnol. 27, 349-353.
  5. Kanchana Devi, K., Seth, N., Kothamasi, S., and Kothamasi, D. 2007. Hydrogen cyanide producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr. Microbiol. 54, 74-78. https://doi.org/10.1007/s00284-006-0473-z
  6. Kende, H. and Zeevaart, J. 1997. The five "Classical" plant hormones. Plant Cell 9, 1197-1210. https://doi.org/10.1105/tpc.9.7.1197
  7. Kim, S., Choe, W., Baik, Y., and Kim, W. 2008. Monitoring of pesticide residues and risk assessment of agricultural products consumed in south Korea. Kor. J. Soc. Food Sci. Nutr. 37, 1515-1522. https://doi.org/10.3746/jkfn.2008.37.11.1515
  8. Koh, R.-H. and Song, H.-G. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J. Microbiol. Biotechnol. 17, 1805-1810.
  9. Kremer, R.J. and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43, 182-186. https://doi.org/10.1007/s002840010284
  10. Lee, K.-H. and Song, H.-G. 2008. Production of antifungal materials by Bacillus sp. which inhibit growth of Phytophthora infestans and Fusarium oxysporum. Kor. J. Microbiol. 44, 258-263.
  11. Mauch, F., Hadwiger, L.A., and Boller, T. 1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combination of chitinase and ${\beta}$-1,3-glucanase. Plant Physiol. 88, 936-942. https://doi.org/10.1104/pp.88.3.936
  12. Meena, B., Marimuthut, T., Vidhyasekaran, P., and Velazhahan, R. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. Z. Pflanzenk. Pflanzen. 108, 369-381.
  13. Nagarajkumar, M., Bhaskaran, R., and Velazhahan, R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  14. Niranjan, S.R., Shetty, H.S., and Reddy, M.S. 2005. Plant growth promoting rhizobacteria: Potential green alternative for plant productivity, pp. 197-216. In Siddiqui, Z.A. (eds.), PGPR: Biological and biofertilization. Springer, Dordrecht, Netherlands.
  15. Ordentlich, A., Elad, Y., and Chet, I. 1988. The role of chitinase of Serratia marcesens in biocontrol of Sclerotium rolfsii. Phytopathol. 78, 84-88.
  16. Rroco, E., Kosegarten, H., Harizaj, F., Imani, J., and Mengel, K. 2003. The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur. J. Agro. 19, 487-493. https://doi.org/10.1016/S1161-0301(02)00185-5
  17. Schwyn, B. and Neilands, J.B. 1987. Universal CAS assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-60. https://doi.org/10.1016/0003-2697(87)90612-9
  18. Voisard, C., Keel, C., Haas, D., and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. Embo. J. 8, 351-358.

Cited by

  1. Screening of bacteria for antagonistic activity against phytopathogens of avocados vol.11, 2017, https://doi.org/10.1016/j.plgene.2016.11.004
  2. Current knowledge and perspectives of Paenibacillus: a review vol.15, pp.1, 2016, https://doi.org/10.1186/s12934-016-0603-7
  3. strain (NK3-4) with the potential to control plant diseases vol.61, pp.10, 2018, https://doi.org/10.1139/gen-2018-0113