DOI QR코드

DOI QR Code

Production Properties on Extracellular Protease from Chryseobacterium Novel Strain JK1

Chryseobacterium 속 신종세균 JK1의 세포외 단백질분해효소 생산특성

  • Lee, Yu-Kyong (Department of Microbiology, Chungbuk National University) ;
  • Oh, Yong-Sik (Department of Microbiology, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • 이유경 (충북대학교 자연과학대학 미생물학과) ;
  • 오용식 (충북대학교 자연과학대학 미생물학과) ;
  • 노동현 (충북대학교 자연과학대학 미생물학과)
  • Received : 2012.03.02
  • Accepted : 2012.03.19
  • Published : 2012.03.31

Abstract

A novel Chryseobacterium sp. JK1 strain producing extracellular protease had been isolated from soil. The largest clear zones were observed on nutrient agar plates supplemented with 1% skim milk at $30-35^{\circ}C$ along with the growth of Chryseobacterium sp. JK1. The cell growth of JK1 strain was maximal at 24 h and maximum protease activity was reached up to 560 unit/ml at the stationary phase in liquid culture. In the presence of maltose, glucose or mannitol in Nutrient broth, cells grew well, but protease were produced poorly with lower production yields of 64-77% than in NB broth only. Similarly, the addition of skim milk, beef extract, yeast extract, malt extract or tryptone showed good growth and poor enzyme production. On the contrary, the addition of $(NH_4)_2HPO_4$ or $(NH_4)_2SO_4$ gave poor growth and good enzyme production of 121-146%.

세포외 단백질분해효소를 생산하는 신종세균 Chryseobacterium sp. JK1은 토양으로부터 분리되었다. JK1 균주는 $30-35^{\circ}C$에서 skim milk를 첨가한 고체배지상에서 가장 큰 투명환을 보여주었다. 액체배지에서 JK1 균주의 세포생육은 24시간에 최대이었고, 세포외 단백질분해효소의 최대활성은 정지기인 22시간에 560 unit/ml에 도달하였다. Nutrient 배지에 maltose 혹은 glucose, mannitol을 첨가하면 생육이 향상되었지만, 단백질 분해효소 생산은 64-77%로 저조하였다. Skim milk 혹은 beef extract, yeast extract, malt extract, tryptone의 첨가는 향상된 생육과 줄어든 효소생산을 보인 반면, $(NH_4)_2HPO_4$ 또는 $(NH_4)_2SO_4$의 첨가는 저조한 생육과 121-146%의 향상된 효소생산을 보여 주었다.

Keywords

References

  1. Bach, E., Daroit, D.J., Correa, A.P.F., and Brandelli, A. 2011. Production and properties of keratinolytic protease from three novel Gram-negative feather-degrading bacteria isolated from Brazilian soils. Biodegrad. 22, 1191-1201. https://doi.org/10.1007/s10532-011-9474-0
  2. Cha, I.-T., Lim, H.-J., and Roh, D.-H. 2007a. Isolation of Pseudoalteromonas sp. HJ47 from deep sea water of East Sea and characterization of its extracellular protease. Kor. J. Life Sci. 17, 272-278. https://doi.org/10.5352/JLS.2007.17.2.272
  3. Cha, I.-T., Oh, Y.-S., and Roh, D.-H. 2007b. Isolation and characterization of Micrococcus sp. HJ-19 secreting extracellular protease. Kor. J. Microbiol. 43, 222-226.
  4. Cha, I.-T., Oh, Y.-S., Cho, W.-D., Lim, C.-S., Lee, J.-K., Lee, O.-S., and Roh, D.-H. 2009. Production condition and characterization of extracellular protease from Micrococcus sp. HJ-19. Kor. J. Microbiol. 45, 69-73.
  5. Cho, W.-D., Lee, J.-K., Lim, C.-S., Park, A.-R., Oh, Y.-S., and Roh, D.-H. 2010. Isolation of Pseudoxanthomonas sp. WD12 and WD32 producing extracellular protease Kor. J. Microbiol. 46, 63-69.
  6. Cowan, D. 1983. Industrial applications: Proteins. pp. 353-374, In Godfrey, T. and West, S. (ed.), Industrial enzymology- The application of enzymes in industry. The Nature Press, New York, N.Y., USA.
  7. Denkin, S.M. and Nelson, D.R. 1999. Induction of protease activity in Vibrio anguillarum by gastrointerstinal mucus. Appl. Environ. Microbiol. 65, 3555-3560.
  8. Fernsndez, J., Mohedano, A.F., Polanco, M.J., Medina, M., and Nunez, M. 1996. Purification and characterization of an extracellular cysteine proteinase produced by Micrococcus sp. INIA 528. J. Appl. Microbiol. 81, 27-34. https://doi.org/10.1111/j.1365-2672.1996.tb03278.x
  9. Fukushima, J., Yamamoto, S., Morihara, K., Atsumi, Y., Takeuchi, H., Kawamoto, S., and Okuda, K. 1989. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J. Bacteriol. 171, 1698-1704. https://doi.org/10.1128/jb.171.3.1698-1704.1989
  10. Godfrey, T. and West, S. 1996. Industrial enzymology. 2nd ed. Macmillan Publisher Inc., New York, N.Y., USA.
  11. Gupta, R., Beg, Q., Khan, S., and Chauhan, B. 2002. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60, 381-395. https://doi.org/10.1007/s00253-002-1142-1
  12. Henderson, G., Krygsman, P., Liu, C.J., Davey, C.C., and Malek, L.T. 1987. Characterization and structure of genes for proteases A and B. from Streptomyces griseus. J. Bacteriol. 169, 3778-3784. https://doi.org/10.1128/jb.169.8.3778-3784.1987
  13. Hinrichsen, L.L., Montel, M.C., and Talon, R. 1994. Proteolytic and lipolytic activities of Micrococcus roseus (65), Halomonas elongata (16) and Vibrio sp. (168) isolated form Danish bacon curing brines. Int. J. Food. Microbiol. 22, 115-126. https://doi.org/10.1016/0168-1605(94)90136-8
  14. Kwon, Y.-T., Lee, H.-H., and Rho, H.-M. 1993. Cloning, expression and sequencing of the minor protease encoding gene from Serratia marcescens ATCC 21074. Gene 125, 75-80. https://doi.org/10.1016/0378-1119(93)90748-R
  15. Lee, K.H., Lee, P.M., Siaw, Y.S., and Morihara, K. 1993. Kinetics of aspartame precursor synthesis catalyzed by Pseudomonas aeruginosa elastase. J. Chem. Technol. Biotechnol. 56, 375-381.
  16. Ok, M., Kim, M.-S., Seo, W.-S., Cha, J.-Y., and Cho, Y.-S. 2000. Characterization of extracellular protease of Bacillus sp. WRD-1 isolated from soil. Kor. J. Appl. Microbiol. Biotechnol. 28, 329-333.
  17. Pragash, G., Narayanan, M.K.B., Naik, P.R., and Saktivel, N. 2009. Characterization of Chryseobacterium aquaticum strain PUPC1 producing a novel antifungal protease from rice rhizosphere soil. J. Microbiol. Biotechnol. 19, 99-107.
  18. Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597-635.
  19. Rattray, F.P., Bockelmann, W., and Fox, P.F. 1995. Purification and characterization of an extracellular protease from Brevibacterium linens ATCC 9174. Appl. Environ. Microbiol. 61, 3454-3456.
  20. Secades, P. and Guijarro, J.A. 1999. Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl. Environ. Microbiol. 65, 3969-3975.
  21. Wang S.-L., Yang, C.H., Liang, T.-W., and Yen, Y.-H. 2008. Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresour. Technol. 99, 3700-3707. https://doi.org/10.1016/j.biortech.2007.07.036
  22. Windle, H.J. and Kelleher, D. 1997. Identification and characterization of a metalloprotease activity from Helicobacter pylori. Infect. Immun. 65, 3132-3137.

Cited by

  1. Characterization and optimum production condition of extracellular protease from Pseudoalteromonas donghaensis HJ51 vol.51, pp.1, 2015, https://doi.org/10.7845/kjm.2015.5012
  2. Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1 vol.49, pp.1, 2013, https://doi.org/10.7845/kjm.2013.019
  3. Aspergillus oryzae와 단백질 분해효소 첨가에 따른 콩알메주 된장의 이화학적 특성 변화 vol.24, pp.5, 2017, https://doi.org/10.11002/kjfp.2017.24.5.697