DOI QR코드

DOI QR Code

Enhancing the Enzymatic Activity of the Multifunctional β-Glycosyl Hydrolase (Cel44C-Man26AP558) from Paenibacillus polymyxa GS01 Using DNA Shuffling

DNA Shuffling을 이용한 Paenibacillus polymyxa GS01의 다기능 β-Glycosyl Hydrolase (Cel44C-Man26AP558) 효소 활성 증가

  • Kang, Young-Min (Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM)) ;
  • Kang, Tae-Ho (Division of Applied Life Sciences (BK21 Program) & Research Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Yun, Han-Dae (Division of Applied Life Sciences (BK21 Program) & Research Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Cho, Kye-Man (Department of Food Science, Gyeongnam National University of Science and Technology)
  • 강영민 (한국한의학연구원 한약연구본부 한약기초연구그룹) ;
  • 강태호 (경상대학교 응용생명과학부 및 농업과학연구원) ;
  • 윤한대 (경상대학교 응용생명과학부 및 농업과학연구원) ;
  • 조계만 (경남과학기술대학교 식품과학부)
  • Received : 2012.05.08
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

We previously reported that the truncated Cel44C-$Man26A_{P558}$ ${\beta}$-glycosyl hydrolase protein exhibits multifunctional activities, including cellulase, xylanase, and lichenase. DNA shuffling of the truncated Cel44C-$Man26A_{P558}$ enzyme was performed to enhance the enzymatic activity of the multifunctional ${\beta}$-glycosyl hydrolase. Two mutant enzymes, M2Cel44C-$Man26A_{P558}$ that carries one mutation (P438A) and M21Cel44C-$Man26A_{P558}$ that carries two mutations (A273T and P438A) were obtained. The enzymatic activity of the M21Cel44C-$Man26A_{P558}$ double mutant was lower than enzymatic activity of the single mutant (M2Cel44C-$Man26A_{P558}$). However, both mutants displayed the enhancements in their enzyme activities that were ${\approx}1.3$- to 2.2-fold higher than the original enzymatic activity in Cel44C-$Man26A_{P558}$. In particular, the mutant M2Cel44C-$Man26A_{P558}$ exhibited an approximate 1.5- to 2.2-fold increase in the cellulase, xylanase, and lichenase activities in comparison with the control (Cel44C-$Man26A_{P558}$). The optimum cellulase, linchenase, and xylanase activities of ${\beta}$-glycosyl hydrolase were observed at pH 7.0, pH 7.0 and pH 6.0, respectively. These results, therefore, suggest that the amino acid residue Ala438 plays important roles in the enhancement of the activity of multifunctional ${\beta}$-glycosyl hydrolase.

본 연구자들은 이전에 cellulase, xyalnase 및 lichenase의 다기능 효소활성을 지니는 절단된 Cel44C-$Man26A_{P558}$${\beta}$-glycosyl hydrolase를 보고하였다. 본 연구에서는 절단된 Cel44C-$Man26A_{P558}$ 효소의 다기능성 ${\beta}$-glycosyl hydrolase 활성을 증가시키기 위해 DNA shuffling을 시도하였다. DNA shuffling에 의해 단일변이(P438A)를 가진 M2Cel44C-$Man26A_{P558}$와 이중변이(A273T 및 P438A)를 가진 M21Cel44C-$Man26A_{P558}$를 얻었다. 이중변이를 가진 M21Cel44C-$Man26A_{P558}$은 단일변이를 가진 M2Cel44C-$Man26A_{P558}$ 보다 효소활성이 낮게 나타났으나, M2Cel44C-$Man26A_{P558}$와 M21Cel44C-$Man26A_{P558}$은 대조구인 Cel44C-$Man26A_{P558}$ 보다 약 1.3에서 2.2배 정도 높은 효소활성을 나타내었다. 특히, 단일변이를 가진 M2Cel44C-$Man26A_{P558}$는 대조구인 Cel44C-$Man26A_{P558}$보다 cellulase, xylanase 및 lichenase 효소활성이 약 1.5에서 2.2배 정도 높게 나타났다. ${\beta}$-Glycosyl hydrolase의 cellulase, linchenase 및 xylanase 최적 효소활성은 각각 pH 7.0, 7.0 및 6.0에서 이었다. 이러한 결과는, 아미노산 잔기인 Ala438이 다기능성 ${\beta}$-glycosyl hydrolase 활성을 증가시키는 중요한 역할을 한다고 추정할 수 있다.

Keywords

References

  1. Ajay, S. and Kiyoshi, H. 1995. Construction of chimeric $\beta$-Glucosidases with improved enzymatic properties. J. Biol. Chem. 37, 21928-21933.
  2. Ash, C., Farrow, J.A., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rDNA group 3 bacilli (Ash, Fallow, Wallbanks, Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253-260.
  3. Binay, B., Shoemark, D.K., Sessions, R.B., Clarke, A.R., and Karguler, N.G. 2009. Increasing the substrate specificity of Bacillus stearothermophillus lactate dehydrogenase by DNA shuffling. Biochem. Eng. J. 48, 118-123. https://doi.org/10.1016/j.bej.2009.08.015
  4. Chen, H. and Jin, S. 2006. Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme Microb. Technol. 39, 1430-1432. https://doi.org/10.1016/j.enzmictec.2006.03.027
  5. Cho, K.M., Hong, S.Y., Lee, S.M., Kim, Y.H., Kahng, G.G., Kim, H., and Yun, H.D. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biotechnol. 73, 618-630. https://doi.org/10.1007/s00253-006-0523-2
  6. Cho, K.M., Hong, S.Y., Lee, S.M., Kim, Y.H., Kahng, G.G., Lim, Y.P., Kim, H., and Yun, H.D. 2007. Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microbiol. Ecol. 54, 341-351. https://doi.org/10.1007/s00248-007-9208-3
  7. Cho, K.M., Hong, S.J., Math, R.K., Islam, S.M.A., Kim, J.O., Lee, Y.H., Kim, H., and Yun, H.D. 2008a. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel44C-man26A. J. Basic Microbiol. 48, 464-472. https://doi.org/10.1002/jobm.200700281
  8. Cho, K.M., Math, R.K., Hong, S.Y., Islam, S.M.A., Kim, J.O., Hong, S.J., Kim, H., and Yun, H.D. 2008b. Changes in the activity of the multifunctional beta-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C-terminal region to minimum size. Biotech. Lett. 30, 1061-1068. https://doi.org/10.1007/s10529-008-9640-6
  9. Crameri, A., Raillard, S.A., Bermudez, E., and Stemmer, W.P.C. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288-291. https://doi.org/10.1038/34663
  10. Eisenbesis, S. and Hocker, B. 2010. Evolutionary mechanism as a template for protein engineering. J. Pept. Sci. 16, 538-544. https://doi.org/10.1002/psc.1233
  11. Hida, H., Yamada, T., and Yamada, Y. 2007. Genome shuffling of Streptomyces sp. U12 for improved production of hydroxycitric acid. Appl. Microbiol. Biotechnol. 73, 1387-1393. https://doi.org/10.1007/s00253-006-0613-1
  12. Hu, H., Qian, J., Chu, J., Wang, Y., Zhuang, Y., and Zhang, S. 2009. DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in Pichia pastoris. J. Biotechnol. 141, 97-103. https://doi.org/10.1016/j.jbiotec.2009.03.006
  13. Kataeva, I.A., Ronald, D.S., Ashit, S., Larry, T.W., Xin-Liang, L., and Lars, G.L. 2002. The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolases CbhA promotes hydrolysis of cellulose by modifying its surface. Appl. Environ. Microbiol. 68, 4292-4300. https://doi.org/10.1128/AEM.68.9.4292-4300.2002
  14. Ryu, K., Hwang, S.Y., Kim, K.H., Kang, J.H., and Lee, E.K. 2008. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and $H_{2}O_{2}$ stability. J. Biotechnol. 133, 110-115. https://doi.org/10.1016/j.jbiotec.2007.09.008
  15. Sambrook, J. and Rusell, D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory Press, New York, USA.
  16. Stemmer, W.P.C. 1994. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747-10751. https://doi.org/10.1073/pnas.91.22.10747
  17. Tang, S.Y., Le, Q.T., Shim, J.H., Yang, S.J., Auh, J.H., Park, C., and Park, K.H. 2006. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J. 273, 3335-3345. https://doi.org/10.1111/j.1742-4658.2006.05337.x
  18. Varnai, A., Huikko, L., Pere, J., Siika-aho, M., and Viikari, L. 2011. Synergistic action of xylanase and mannose improves the total hydrolysis of softwood. Bioresour. Technol. 102, 9096-9104. https://doi.org/10.1016/j.biortech.2011.06.059
  19. Warner, C.D., Hoy, J.A., Shilling, T.C., Linnen, M.J., Ginder, N.D., Ford, C.F., Honzatko, R.B., and Reilly, P.J. 2010. Tertiary structure and characterization of a glycoside hydrolase family 44 endoglucanase from Clostridum acetobutylicum. Appl. Environ. Microbiol. 76, 338-346. https://doi.org/10.1128/AEM.02026-09
  20. Zaldivar, J., Nielsen, J., and Olsson, L. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56, 17-34. https://doi.org/10.1007/s002530100624

Cited by

  1. Construction and expression of a novel Paenibacillus polymyxa GS01 bifunctional xyn43A-lin16A gene through overlap extension PCR vol.56, pp.4, 2013, https://doi.org/10.1007/s13765-013-3050-8
  2. Metagenomics of un-culturable bacteria in cow rumen: Construction of cel9E–xyn10A fusion gene by site-directed mutagenesis vol.113, 2015, https://doi.org/10.1016/j.molcatb.2014.11.010