References
- Bolam, D.N., Hughes, N., Virden, R., Lakey, J.H., Hazlewood, G.P., Henrissat, B., Braithwaite, K.L., and Gilbert, H.J. 1996. Mannanase A from Pseudomonas fluorescens spp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35, 16195-16204. https://doi.org/10.1021/bi961866d
- Cuyvers, S., Dornez, E., Delcour, J.A., and Courtin, C.M. 2011. The secondary substrate binding site of the Pseudoalteromonas haloplanktis GH8 xylanase is relevant for activity on insoluble but not soluble substrates. Appl. Microbiol. Biotechnol. 92, 539-549. https://doi.org/10.1007/s00253-011-3343-y
- Fukuda, M., Watanabe, S., Yoshida, S., Itoh, H., Itoh, Y., Kamio, Y., and Kaneko, J. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192, 2210-2219. https://doi.org/10.1128/JB.01406-09
- Gallardo, O., Pastor, F.I., Polaina, J., Diaz, P., Lysek, R., Vogel, P., Isorna, P., Gonzalez, B., and Sanz-Aparicio, J. 2010. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J. Biol. Chem. 285, 2721-2733. https://doi.org/10.1074/jbc.M109.064394
- Gallardo, O., Fernandez-Fernandez, M., Valls, C., Valenzuela, S.V., Roncero, M.B., Vidal, T., Diaz, P., and Pastor, F.I. 2010. Characterization of a family GH5 xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Appl. Environ. Microbiol. 76, 6290-6294. https://doi.org/10.1128/AEM.00871-10
- Harada, K.M., Tanaka, K., Fukuda, Y., Hashimoto, W., and Murata, K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicelluloses. Microbiol. Res. 163, 293-298. https://doi.org/10.1016/j.micres.2006.05.011
- Lee, J.-C. and Yoon, K.-H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58, 612-616. https://doi.org/10.1099/ijs.0.65350-0
- Lee, T.H., Lim, P.O., and Lee, Y.E. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17, 29-36.
- Kim, Y.A. and Yoon, K.-H. 2010. Characterization of a Paenibacillus woosongensis β-xylosidase/α-arabinofuranosidase produced by recombinant Escherichia coli. J. Microbiol. Biotechnol. 29, 1711-1716.
- Ko, C.-H., Lin, Z.-P., Tu, J., Tsai, C.-H., Liu, C.-C., Chen, H.-T., and Wang, T.-P. 2010. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Inter. Biodeterior. Biodegr. 64, 13-19. https://doi.org/10.1016/j.ibiod.2009.10.001
- Kweun, M.A., Shon, J.Y., and Yoon, K.-H. 2004. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32, 212-217.
- Miller, M.L., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.
- Murakami, M.T., Arni, R.K., Vieira, D.S., Degreve, L., Ruller, R., and Ward, R.J. 2005. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett. 579, 6505-6510.
- Stjohn, F.J., Rice, J.D., and Preston, J.F. 2006. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72, 1496-1506. https://doi.org/10.1128/AEM.72.2.1496-1506.2006
- Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 33-64. https://doi.org/10.1080/07388550290789450
- Thomson, J.A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104, 65-82. https://doi.org/10.1111/j.1574-6968.1993.tb05864.x
- Valenzuela, S.V., Diaz, P., and Javier Pastor, F.I. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 58, 4814-4818. https://doi.org/10.1021/jf9045792
-
Waeonukul, R., Pason, P., Kyu, K.L., Sakka, K., Kosugi, A., Mori, Y., and Ratanakhanokchai, K. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-
$\beta$ -1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19, 277-285. - Watanabe, S., Viet, D.N., Kaneko, J., Kamio, Y., and Yoshida, S. 2008. Cloning, expression, and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase 1. Biosci. Biotechnol. Biochem. 72, 951-958. https://doi.org/10.1271/bbb.70622
- Yoon, K.-H. 2009. Cloning of a Bacillus subtilis AMX-4 xylanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 19, 1514-1519. https://doi.org/10.4014/jmb.0907.07004
- Yoon, K.-H. 2010. Mannanolytic enzyme activity of Paenibacillus woosongensis. Kor. J. Microbiol. 46, 397-400.
Cited by
- Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석 vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1704.04001
- Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석 vol.48, pp.2, 2020, https://doi.org/10.4014/mbl.2002.02013