DOI QR코드

DOI QR Code

Cloning and Characterization of Xylanase Gene from Paenibacillus woosongensis

Paenibacillus woosongensis의 Xylanase 유전자 클로닝과 특성분석

  • Yoon, Ki-Hong (Department of Food Science and Biotechnology, Woosong University)
  • 윤기홍 (우송대학교 식품생물과학과)
  • Received : 2012.04.23
  • Accepted : 2012.05.15
  • Published : 2012.06.30

Abstract

A gene encoding the xylanase (XynA) predicted from partial genomic sequence of Paenibacillus woosongensis was cloned into Escherichia coli by PCR. This xynA gene consisted of 633 nucleotides, encoding a polypeptide of 211 amino acid residues. The deduced amino acid sequence exhibited 85-89% identity with those of several Paenibacillus xylanases, belonging to the glycosyl hydrolase family 11. As a results of expression of the structural gene by T7 promoter of a pET23a(+) expression vector, xylanase activity was higher in cell-free extract than culture filtrate of a recombinant Escherichia coli BL21(DE3) CodonPlus. However, the expression level of xylanase was not sufficient be detected by SDS-PAGE. The cell-free extract showed maximal xylanase activity at $60^{\circ}C$ and pH 5.5. The predominant products resulting from xylan and xylooligosaccharide hydrolysis were xylose and xylotriose. The enzyme could hydrolyze xylooligosaccharides larger than xylbiose.

Paenibacillus woosongensis의 유전체 부분 염기서열로부터 유추된 xylanase 유전자를 PCR 증폭하여 대장균에 클로닝하였다. Xylanase 유전자는 211 아미노산으로 구성된 단백질을 코드하며 633 뉴클레오티드로 이루어졌다. 아미노산 잔기배열을 분석한 결과 xylanase는 glycosyl hydrolase family 11에 속하며 Paenibacillus의 xylanase와 85-89% 상동성을 보였다. Xylanase 유전자를 T7 promoter로 과잉발현한 결과 그 발현량이 높지 않았으며, 균체내 외에서 모두 효소활성이 관찰되었다. 재조합 대장균의 균체파쇄상등액을 사용하여 효소 반응특성을 조사한 결과 pH 5.5와 $60^{\circ}C$에서 최대 반응활성을 보였다. 한편 xylanase의 기질로 xylan과 xylooligosaccharides를 사용하였을 때 xylose와 xylotriose가 주된 최종 반응산물로 관찰되었으며 xylobiose는 분해하지 못하였으나 이보다 중합도가 큰 xylooligosaccharides는 분해하였다.

Keywords

References

  1. Bolam, D.N., Hughes, N., Virden, R., Lakey, J.H., Hazlewood, G.P., Henrissat, B., Braithwaite, K.L., and Gilbert, H.J. 1996. Mannanase A from Pseudomonas fluorescens spp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 35, 16195-16204. https://doi.org/10.1021/bi961866d
  2. Cuyvers, S., Dornez, E., Delcour, J.A., and Courtin, C.M. 2011. The secondary substrate binding site of the Pseudoalteromonas haloplanktis GH8 xylanase is relevant for activity on insoluble but not soluble substrates. Appl. Microbiol. Biotechnol. 92, 539-549. https://doi.org/10.1007/s00253-011-3343-y
  3. Fukuda, M., Watanabe, S., Yoshida, S., Itoh, H., Itoh, Y., Kamio, Y., and Kaneko, J. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192, 2210-2219. https://doi.org/10.1128/JB.01406-09
  4. Gallardo, O., Pastor, F.I., Polaina, J., Diaz, P., Lysek, R., Vogel, P., Isorna, P., Gonzalez, B., and Sanz-Aparicio, J. 2010. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J. Biol. Chem. 285, 2721-2733. https://doi.org/10.1074/jbc.M109.064394
  5. Gallardo, O., Fernandez-Fernandez, M., Valls, C., Valenzuela, S.V., Roncero, M.B., Vidal, T., Diaz, P., and Pastor, F.I. 2010. Characterization of a family GH5 xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Appl. Environ. Microbiol. 76, 6290-6294. https://doi.org/10.1128/AEM.00871-10
  6. Harada, K.M., Tanaka, K., Fukuda, Y., Hashimoto, W., and Murata, K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicelluloses. Microbiol. Res. 163, 293-298. https://doi.org/10.1016/j.micres.2006.05.011
  7. Lee, J.-C. and Yoon, K.-H. 2008. Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int. J. Syst. Evol. Microbiol. 58, 612-616. https://doi.org/10.1099/ijs.0.65350-0
  8. Lee, T.H., Lim, P.O., and Lee, Y.E. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17, 29-36.
  9. Kim, Y.A. and Yoon, K.-H. 2010. Characterization of a Paenibacillus woosongensis β-xylosidase/α-arabinofuranosidase produced by recombinant Escherichia coli. J. Microbiol. Biotechnol. 29, 1711-1716.
  10. Ko, C.-H., Lin, Z.-P., Tu, J., Tsai, C.-H., Liu, C.-C., Chen, H.-T., and Wang, T.-P. 2010. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Inter. Biodeterior. Biodegr. 64, 13-19. https://doi.org/10.1016/j.ibiod.2009.10.001
  11. Kweun, M.A., Shon, J.Y., and Yoon, K.-H. 2004. High-level expression of a Bacillus subtilis mannanase gene in Escherichia coli. Kor. J. Microbiol. Biotechnol. 32, 212-217.
  12. Miller, M.L., Blum, R., Glennon, W.E., and Burton, A.L. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2, 127-132.
  13. Murakami, M.T., Arni, R.K., Vieira, D.S., Degreve, L., Ruller, R., and Ward, R.J. 2005. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett. 579, 6505-6510.
  14. Stjohn, F.J., Rice, J.D., and Preston, J.F. 2006. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72, 1496-1506. https://doi.org/10.1128/AEM.72.2.1496-1506.2006
  15. Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 33-64. https://doi.org/10.1080/07388550290789450
  16. Thomson, J.A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 104, 65-82. https://doi.org/10.1111/j.1574-6968.1993.tb05864.x
  17. Valenzuela, S.V., Diaz, P., and Javier Pastor, F.I. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 58, 4814-4818. https://doi.org/10.1021/jf9045792
  18. Waeonukul, R., Pason, P., Kyu, K.L., Sakka, K., Kosugi, A., Mori, Y., and Ratanakhanokchai, K. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-$\beta$-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19, 277-285.
  19. Watanabe, S., Viet, D.N., Kaneko, J., Kamio, Y., and Yoshida, S. 2008. Cloning, expression, and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase 1. Biosci. Biotechnol. Biochem. 72, 951-958. https://doi.org/10.1271/bbb.70622
  20. Yoon, K.-H. 2009. Cloning of a Bacillus subtilis AMX-4 xylanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 19, 1514-1519. https://doi.org/10.4014/jmb.0907.07004
  21. Yoon, K.-H. 2010. Mannanolytic enzyme activity of Paenibacillus woosongensis. Kor. J. Microbiol. 46, 397-400.

Cited by

  1. Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석 vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1704.04001
  2. Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석 vol.48, pp.2, 2020, https://doi.org/10.4014/mbl.2002.02013