DOI QR코드

DOI QR Code

SHRIMP U-Pb Ages of Detrital Zircons from Metasedimentary Rocks in the Yeongheung-Seonjae-Daebu Islands, Northwestern Gyeonggi Massif

경기육괴 북서부 영흥도-선재도-대부도에 분포하는 변성퇴적암 내 쇄설성 저어콘의 SHRIMP U-Pb 연대

  • Na, Jun-Seok (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Yoon-Sup (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Cho, Moon-Sup (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yi, Kee-Wook (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
  • 나준석 (서울대학교 지구환경과학부) ;
  • 김윤섭 (충북대학교 지구환경과학과) ;
  • 조문섭 (서울대학교 지구환경과학부) ;
  • 이기욱 (한국기초과학지원연구원 환경과학연구부)
  • Received : 2012.03.08
  • Accepted : 2012.03.22
  • Published : 2012.03.31

Abstract

We investigated the various lithologies and zircon U-Pb ages of metasedimentary rocks from the Yeongheung-Seonjae-Daebu Islands, western Gyeonggi Massif, whose geologic and geochronologic features are poorly constrained in spite of their significance for tectonic interpretation. Major lithology consists of quartzites or meta-sandstones commonly alternating with semi-pelitic schists, together with lesser amounts of calcareous sandstones with matrix-supported quartzite clasts, calcareous schists, and pelitic schists. Pelitic schists uncommonly contain large porphyroblasts of garnet as well as quartz veins with large crystals of muscovite and andalusite or kyanite. SHRIMP U-Pb ages of detrital zircons from two analyzed metasandstones define four age populations: Neoarchean (~2.5 Ga), Paleoproterozoic (~2.0-1.5 Ga), Neoproterozoic (~1.1-0.7 Ga), and Early Paleozoic (~560-400 Ma). The youngest zircon ages are clustered at ~420 Ma. These results suggest that the deposition of meta-sandstones took place after the Silurian, possibly during the Devonian, and are analogous to those of the Taean Formation reported from the western part of the Gyeonggi Massif. Moreover, The age distribution patterns of detrital zircons and the Barrovian-type metamorphic facies of pelitic schists are similar to those reported from the Imjingang belt, suggesting that the Taean Formation likely corresponds to southwestward extension of the Imjingang Belt.

경기육괴의 북서부에 위치한 영흥도-선재도-대부도는 지구조적 중요성에도 불구하고 지질 및 지질연대 자료가 거의 없는 지역이다. 우리는 이 지역에 산출하는 변성퇴적암의 암상과 쇄설성 저어콘의 U-Pb 연대를 밝히는 연구를 수행하였다. 연구 지역의 변성퇴적암은 대부분 규암-변성사암 및 규암과 편암의 호층대로 이루어져 있으며, 규암 역을 포함하는 석회질 역질 사암, 석회질 편암 그리고 변성이질암이 소규모로 산출한다. 변성이질암에는 석류석 반상변정이 두드러지게 산출하며, 변성이질암 내의 석영맥에서는 남정석 또는 홍주석이 백운모와 함께 산출한다. 두개의 변성사암 시료에서 분석한 쇄설성 저어콘들은 신시생대(~2.5 Ga), 고원생대(~2.0-1.5 Ga), 신원생대(~1.1-0.7 Ga), 초기 고생대(~560-400Ma) 연대가 우세하게 분포하며, 가장 젊은 연령의 군집은 ~420 Ma에서 나타난다. 이러한 결과는 분석된 변성사암이 실루리아기 이후, 아마도 데본기에 퇴적되었음을 시사하며, 태안층에서 보고된 쇄설성 저어콘의 연령분포와 유사하다. 이와 함께 임진강대 변성퇴적암에서도 유사한 쇄설성 저어콘의 연령분포와 바로비안형 변성상이 보고되었다. 따라서, 경기육괴 서부에 산출하는 태안층은 임진강대의 서남 연장부에 해당될 것으로 판단된다.

Keywords

References

  1. 기원서, 임순복, 김현철, 김복철, 황상구, 송교영, 김유홍, 2008, 연천 도폭 지질조사보고서, 83p.
  2. 나기창, 김형식, 이상헌, 1982, 서산층군의 층서와 변성작용. 광산지질, 15, 33-39.
  3. 조등룡, 김용준, Armstrong, R., 2006, 서산층군 함철규암의 쇄설성 저어콘에 대한 SHRIMP U-Pb 연대: 시대와 층서의 제한. 암석학회지, 15, 119-127.
  4. 조문섭, 권성택, 이진한, Nakamura, E., 1995, 연천-전곡 지역에 분포하는 임진강대의 고압 각섬암. 암석학회지, 4, 1-19.
  5. 박계헌, 이태호, 이기욱, 2011, 옥천변성대 대향상 규암층 쇄설성 저어콘의 SHRIMP U-Pb 연령. 지질학회지, 47, 423-431.
  6. 이병주, 이승렬, 조등룡, 1999a, 대부도 도폭 지질조사 보고서. 한국자원연구소, 33p.
  7. 이병주, 김유봉, 이승렬, 김정찬, 강필종, 최현일, 진명식, 1999b, 서울-남천점 지질도폭 설명서. 한국자원연구소, 64p.
  8. 정연중, 이기욱, Kamo, S.L., 정창식, 2008, 경기육괴 동부 맨거라이트에 대한 저어콘 단일 입자 열이온화질량분석법 연대측정. 지질학회지, 44, 425-434.
  9. Cherniak, D.J. and Watson, E.B., 2003, Diffusion in zircon. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon. Reviews in Mineralogy & Geochemistry. 53, 113-143. https://doi.org/10.2113/0530113
  10. Cho, M., Kim, Y., and Ahn, J., 2007, Metamorphic evolution of the Imjingang belt, Korea: Implications for Permo-Triassic collisional orogeny. International Geology Review, 49, 30-51. https://doi.org/10.2747/0020-6814.49.1.30
  11. Cho, M., Kim, H., Lee, Y., Horie, K., and Hidaka, H., 2008, The oldest(ca. 2.51 Ga) rock in South Korea: U-Pb zircon age of a tonalitic migmatite, Daeijak Island, western Gyeonggi massif. Geosciences Journal, 12, 1-6. https://doi.org/10.1007/s12303-008-0001-1
  12. Cho, M., Na, J., and Yi, K., 2010, SHRIMP U-Pb ages of detrital zircons in metasandstones of the Taean Formation, Western Gyeonggi massif, Korea: Tectonic implications. Geosciences Journal, 14, 99-109. https://doi.org/10.1007/s12303-010-0011-7
  13. Choi, D.K. and Chough, S.K., 2005, The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: a review. Geosciences Journal, 9, 187-214. https://doi.org/10.1007/BF02910579
  14. Choi, P.-Y., Rhee, C.W., Lim, S.-B., and So, Y., 2008, Subdivision of the Upper Paleozoic Taean Formation in the Anmyeondo-Boryeong area, west Korea: a preliminary approach to the sedimentary organization and structural features. Geosciences Journal, 12, 373-384. https://doi.org/10.1007/s12303-008-0037-2
  15. Claou-Long, J.C., Compston, W., Roberts, J., and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and $^{40}Ar/^{39}Ar$ analysis. In: Berggren, W.A., Kent, D.B., Auberey, M.P., and Hardenbol, J. (eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication, 4, 3-21.
  16. Cumming, G.L. and Richards, J.R., 1975, Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters, 28, 155-171. https://doi.org/10.1016/0012-821X(75)90223-X
  17. Ernst, W.G., Tsujimori, T., Zhang, R., and Liou, J.G., 2007, Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Sciences, 35, 53-110.
  18. Fedo., C.M., Sircombe, K.N., and Rainbird, R.H., 2003, Detrital zircon analysis of the sedimentary record. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon. Reviews in Mineralogy & Geochemistry, 53. 277-304.
  19. Harley, S.L. and Kelly, N.M., 2007, Zircon: tiny but timely. Elements, 3, 13-18. https://doi.org/10.2113/gselements.3.1.13
  20. Hietpas, J., Samson, S., Moecher, D., and Schmidt, A.K., 2010, Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology, 38, 167-170. https://doi.org/10.1130/G30265.1
  21. Kim, J., Cheong, C.-S., Lee, S.R., Cho, M., and Yi, K., 2008, In-situ U-Pb titanite age of the Chuncheon amphibolite: Evidence for Triassic regional metamorphism in central Gyeonggi massif, South Korea, and its tectonic implication. Geosciences Journal, 12, 309-316. https://doi.org/10.1007/s12303-008-0031-8
  22. Kim, S.W., Oh, C.W., Williams, I.S., Rubatto, D., Ryu, I.- C., Rajesh, V.J., Kim, C.-B., Guo, J., and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi massif, South Korea: Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377. https://doi.org/10.1016/j.lithos.2006.03.050
  23. Kim, S.W., Kee, W.-S., Lee, S.R., Santosh, M., and Kwon, S., in press, Neoproterozoic plutonic rocks from the western Gyeonggi massif, South Korea: Implications for the amalgamation and break-up of the Rodinia supercontinent. Precambrian Research.
  24. Kim, Y. and Cho, M., 2008, Two-stage growth of porphyroblastic biotite and garnet in the Barrovian metapelites of the Imjingang belt, central Korea. Journal of Metamorphic Geology, 26, 385-399. https://doi.org/10.1111/j.1525-1314.2008.00767.x
  25. Kim, Y., Cheong, C.-S., Lee, Y., and Williams, I.S., 2009, SHRIMP allanite U-Th-Pb dating of bimodal Triassic metamorphism of Neoarchean tonalitic gneisses, Daeijak Island, central Korea. Geosciences Journal, 13, 305-316. https://doi.org/10.1007/s12303-009-0029-x
  26. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H., and Wingate, M.T.D., 2003, Age, geochemistry, and tectonic significance of Neoproterozoic granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research, 122, 297-310. https://doi.org/10.1016/S0301-9268(02)00216-4
  27. Ludwig, K.R., 2003, User's manual for Isoplot 3.00: a geochronogical toolkit for Mirosoft Excel. Berkeley Geochronology Center Special Publication, 47p.
  28. McKenzie, N.R., Hughes, N.C., Myrow, P.M., Choi, D.K., and Park, T.-Y., 2011, Trilobites and zircons link North China with the eastern Himalaya during the Cambrian. Geology, 39, 591-594. https://doi.org/10.1130/G31838.1
  29. Metacalfe, I., 2006, Paleozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9, 24-46. https://doi.org/10.1016/j.gr.2005.04.002
  30. Na, K.C., 1992, A study on the metamorphism in the southwestern part of Gyeonggi Massif. Journal of the Petrological Society of Korea, 1, 25-33.
  31. Paces, J.B. and Miller, J.D., 1993. Precise U-.Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research 98, 13997-14013. https://doi.org/10.1029/93JB01159
  32. Ree, J.-H, Cho, M., Kwon, S.-T., and Nakamura, E., 1996, Possible eastward extenstion of Chinese collision belt in South Korea: The Imjingang belt. Geology, 24, 1071- 1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  33. Spear, F.S., 1993, Metamorphic phase equilibria and pressure- temperature-time paths. Mineralogical Society of America, Washington, D. C., 799p.
  34. Wan, Y., Liu, D., Wilde, S.A., Cao, J., Chen, B., Dong, C., Song, B., and Du, L., 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences, 37, 140-153. https://doi.org/10.1016/j.jseaes.2009.08.002
  35. Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: Mickibben, M.A., Shanks III, W.C., Ridley, W.I. (eds.), Applications of Micro Analytical Techniques to Understanding Mineralizing Processes. Reviews of Economic Geology 7, 1-35. https://doi.org/10.1080/07474938808800138
  36. Wu, F.-Y., Han, R.-Y., Yang, J.-H., Wilde, S.A., Zhai, M.-G., and Park, S.-C., 2007, Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238, 232-248. https://doi.org/10.1016/j.chemgeo.2006.11.012
  37. Zhao, G., Cao, L., Wilde, S.A., Sun, M., Choe, W.J., and Li, S., 2006, Implications based on the frist SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251, 365-379. https://doi.org/10.1016/j.epsl.2006.09.021
  38. Zhao, G., Sun, M., Wilde, S.A., and Li, S.Z., 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136, 177-202. https://doi.org/10.1016/j.precamres.2004.10.002

Cited by

  1. Detrital zircon U–Pb geochronology and tectonic implications of the Paleozoic sequences in western South Korea vol.95, 2014, https://doi.org/10.1016/j.jseaes.2014.05.022
  2. An occurrence of the post-orogenic Triassic strata on Deokjeok Island, western Gyeonggi massif, Korea vol.18, pp.2, 2014, https://doi.org/10.1007/s12303-014-0027-5
  3. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes vol.143, 2017, https://doi.org/10.1016/j.jseaes.2017.04.028
  4. Fast cooling following a Late Triassic metamorphic and magmatic pulse: implications for the tectonic evolution of the Korean collision belt vol.662, 2015, https://doi.org/10.1016/j.tecto.2015.06.016
  5. Geological heritages of the candidate site for National Geopark around the west coast of Chungcheongnam-do Province, Korea: Characteristics and values vol.52, pp.5, 2016, https://doi.org/10.14770/jgsk.2016.52.5.665
  6. Tracking Paleozoic evolution of the South Korean Peninsula from detrital zircon records: Implications for the tectonic history of East Asia vol.50, 2017, https://doi.org/10.1016/j.gr.2017.05.009
  7. SHRIMP U-Pb Zircon Geochronology of the Guryong Group in Odesan Area, East Gyeonggi Massif, Korea: A new identification of Late Paleozoic Strata and Its Tectonic Implication vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.197
  8. Yellow Sea Transform Fault (YSTF) and the developemnt of Korean Peninsula vol.9, pp.2, 2015, https://doi.org/10.1134/S1819714015020037
  9. Geology of the 2018 Winter Olympic site, Pyeongchang, Korea vol.60, pp.3, 2018, https://doi.org/10.1080/00206814.2017.1340196
  10. SHRIMP U-Pb ages of detrital zircons from the Early Cretaceous Nakdong Formation, South East Korea: Timing of initiation of the Gyeongsang Basin and its provenance vol.27, pp.5, 2018, https://doi.org/10.1111/iar.12258
  11. Petrogenesis of Mesozoic granites at Garorim Bay, South Korea: evidence for an exotic block within the southwestern Gyeonggi massif? pp.1598-7477, 2019, https://doi.org/10.1007/s12303-018-0031-2